
Compliments of

REPORT

Reactive
Systems
Explained
Jump-Start Your Journey
to Reactive Architecture

Grace Jansen & Peter Gollmar

Smart

Build

Developing applications with reactive
microservices and data streams for the
real-time enterprise is easier than you think.

Get started now with tutorials, free online
courses, sample code and more.

ibm.biz/oreilly-reactive-tech

https://ibm.biz/oreilly-reactive-tech

Grace Jansen and Peter Gollmar

Reactive Systems Explained
Jump-Start Your Journey to

Reactive Architecture

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-07730-5

[LSI]

Reactive Systems Explained
by Grace Jansen and Peter Gollmar

Copyright © 2020 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Kathleen Carr
Development Editor: Sarah Grey
Production Editor: Beth Kelly
Copyeditor: Kim Wimpsett

Proofreader: Octal Publishing, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

December 2019: First Edition

Revision History for the First Edition
2019-12-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492077329 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Reactive Systems
Explained, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and IBM. See our statement of
editorial independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492077329
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Foreword. vii

Preface. ix

1. The Journey to Reactive Systems. 1
Microservices: So Many Choices 2
When and Where Are Reactive Systems Applicable? 2

2. Defining Reactive Systems. 5
Scale Matters 8

3. Your Toolbox to Reactive. 11
Multithreading 12
The Reactor Pattern 13
The Multireactor Pattern 14
The Actor Model 14
Akka 15

4. Putting Your Reactive Toolbox to Work. 17
Going from Services to Systems: Being Message Driven 17
Distributed Infrastructure 19
Orchestrated Cloud Infrastructure 19
Reactive Meets Machine Learning 21
Conclusions 23

v

Foreword

Dear reader,

In an ever-changing software landscape, user expectations grow ever
more demanding. Developers need to be able to produce business
value at a sustainable, rapid pace and for a user base whose size we
do not necessarily know.

I started my own reactive journey back in 2009, when I asked myself
whether developer productivity and software scalability were funda‐
mentally incompatible. I realized that the most accurate system in
the world would be pointless if it never provides value at the
moment it is needed. That requires responsiveness. To address the
challenge of responsiveness, we need to consider the evil twins that
always play tricks on us: load and failure. What does the distribution
of response times look like under varying load and failure
conditions?

To handle failure conditions, we need replication and redundancy to
ensure that functionality is still available; to cope with varying loads,
we need elasticity to ensure that processing capacity can be adjusted
dynamically according to demand. We need to break free of the
single-machine assumption. We also need to consider infrastruc‐
tural failures such as power or network failures. Different machines
being spread out geographically also gives us the opportunity to
serve consumers from the closest servers.

Elasticity also implies distribution. To share the increased process‐
ing burden, we need to be able to add (and remove) machines and
redirect traffic dynamically. This also has a secondary benefit in as
much as we can now pay for actual infrastructure usage rather than
paying for maximum capacity at all times.

vii

The key to enabling all of this is to embrace messaging at the core, to
break free from the assumption of locality and a shared now. With
messaging it does not matter where the recipient is or whether the
recipient is available when the message is sent.

Perhaps you, the reader, will achieve the joy of discovering Reactive
Systems by virtue of reading this excellent and to-the-point report. I
wish you a very enjoyable time, and I suspect that there is an idea or
two in it that will blow your mind.

— Viktor Klang
Deputy CTO of Lightbend,

co-creator of Reactive Streams,
co-creator of Cloudstate.io,

Tech Lead Emeritus of the Akka project

viii | Foreword

Preface

First, we’d like to acknowledge those who created a vocabulary for
discussing the principles of modern, distributed application archi‐
tecture and authored the Reactive Manifesto. We are grateful to this
community of innovators who continue to refine these concepts and
realize them in the software they create. We extend our deep grati‐
tude to Viktor Klang for taking time to provide the foreword for this
report and for his leadership in the reactive systems community. We
would also like to thank our reviewers, Jason Yong, Jeremy Hughes,
Neil Patterson, and Grant Steinfeld, whose comments helped shape
this report and make it of the highest quality. A big thanks to Anita
Chung for urging us to take on this project and providing encour‐
agement throughout the process. We are also indebted to many col‐
leagues who have produced some of the material on reactive systems
that served to inform this report, including Jonas Bonér, Kevin Web‐
ber, Hugh McKee, Iain Lewis, and Mark Sturdevant. Finally, we
would like to thank Sarah Grey and the O’Reilly team for their edi‐
torial guidance and support as we created this report.

We dedicate this book to our friends and family for supporting us
through its creation and for being a constant source of inspiration
and encouragement.

Grace: I would like to personally dedicate this book to my parents,
Colette and Patrick Jansen, and to my brother and sister, Matthew
Jansen and Eleanor Jansen, for encouraging me to pursue my pas‐
sion through a career in technology and encouraging me to co-
author this report. I would also like to take this opportunity to thank
my friends, partner, and colleagues for their continuous support and
patience throughout the writing of this book.

ix

Peter: I dedicate this book to my wife, Becky, whose love and sup‐
port give me the courage to pursue new ventures such as this. And
to my children, Bobby, Oz, and Grace, who are a constant source of
inspiration.

x | Preface

CHAPTER 1

The Journey to Reactive Systems

Enterprises are transforming themselves into cognitive businesses:
companies that learn and adapt instantly to the changing conditions
around them, using real-time data and AI to bring additional value
to their customers. They are realizing this business agility by build‐
ing applications capable of handling massive scale, massive amounts
of data, or both, and running them in a hybrid, multicloud
environment.

As enterprise developers and architect leaders within these organi‐
zations, you are key influencers. Your recommendations drive the
buying decisions that lead to success or failure. The good news is
that today you have an unprecedented array of open source technol‐
ogies on which to base these next-generation applications. That
unprecedented array of choices is also the bad news. This report dis‐
cusses some of the factors driving organizations to employ a
reactive-systems approach to cloud native development.

Within this report we define reactive systems as an architectural style
that enables applications composed of multiple microservices work‐
ing together as a single unit to better react to their surroundings and
one another, manifesting in greater elasticity when dealing with
ever-changing workload demands and resiliency when components
fail. We also introduce some of the key patterns found within reac‐
tive systems and distinguish between various toolkits and frame‐
works. Our goal is to help enterprise developers and architects make
better decisions about reactive systems.

1

1 Dimensional Research. “Global Microservices Trends: A Survey of Development Pro‐
fessionals,” April 2018

Microservices: So Many Choices
For most enterprises, an essential part of becoming a cognitive busi‐
ness is migrating to a hybrid multicloud infrastructure and adopting
microservices application architecture. A 2018 survey of developers1

found that more than 90% were pursuing a microservices strategy.
It’s not hard to see why, given that everything is trending toward
greater software development velocity. Microservices are intended
to be small, self-contained, single-purpose units of computation,
loosely coupled to other microservices through well-defined inter‐
faces. These characteristics enable you to develop, test, and deploy
them independently—different teams, different timelines. Combin‐
ing this architectural approach with DevOps methodologies such as
continuous integration, continuous delivery, and continuous
deployment can lead to tremendous efficiencies. But for developers,
two of the chief advantages of microservices are flexibility and
choice. The relative independence they offer frees you to select a
mixture of programming languages or frameworks based on the
services you’re developing and the skills available on your team.

However, applications are composed of systems of microservices.
How an application’s microservices behave internally, as well as how
they interact with one another, determines the application’s ability to
scale dynamically, exhibit resiliency in the presence of failures, and
maintain responsiveness as workload increases. In short, these
behaviors establish the fundamentals of building a reactive system.

When and Where Are Reactive Systems
Applicable?
You could, theoretically, engineer every microservices application as
a reactive system. It’s equally true that this approach will present
quite a learning curve for many developers today. If the application
does not require it, why do it? Here’s what we think: you will need to
climb that hill sooner than you might think, so you might as well
start the journey now. It is not a matter of “if,” but “when.” Let’s look
at a few scenarios that would drive you to a reactive systems
architecture.

2 | Chapter 1: The Journey to Reactive Systems

2 SinglesStone. “Poor Website Performance Undermines Customers’ Purchase Intent and
Brand Impression,” 2014

Web/Mobile Commerce
Let’s say it’s late November, the US Thanksgiving holiday is over, and
peak shopping season has begun. Millions of people are shopping
online, and every one of them expects your website to be responsive
no matter how many others are browsing and buying at the same
time. A study of the impact website performance has on buying
behaviors2 shows that sluggish sites reduced both a customer’s likeli‐
hood to make a purchase as well as the amount they would be will‐
ing to pay for a product. The researchers concluded that there was a
“48% reduction in revenue between the high and poor performing
website.” The results of this study as well as numerous others high‐
lights just how important it is for your website to remain responsive
regardless of load.

So, does the reverse apply? If you improve the responsiveness of a
solidly performing web commerce site, will that improve financial
results? In a word, “yes.” Verizon Wireless rearchitected its mono‐
lithic commerce platform to reactive microservices and achieved a
threefold reduction in page response times, dramatically improved
sales conversion rates, and realized a 235% increase in revenue over
a comparable prior sales period.

Data-Driven Decisions
It’s been said that data is now “the world’s most valuable resource.”
Vast amounts of data exist, and even greater amounts are generated
every second of the day by nature, people, and systems. Collecting,
aggregating, and making use of this data is driving new businesses
and improving the way we operate. The challenge, however, is deal‐
ing with its sheer volume and velocity.

PayPal presents an interesting study of its Product Performance
Tracking system. This application processes information from
across PayPal’s global network of platforms, giving executives insight
into the performance of products, and allowing the company to
adjust and deliver a better experience for its customers. The data
volume and velocity statistics are stunning: 40 terabytes of data and
more than 10 billion messages every day, asynchronously and at

When and Where Are Reactive Systems Applicable? | 3

https://oreil.ly/dVimD
https://oreil.ly/2aaML
https://oreil.ly/ltTly

widely varying rates. PayPal adopted a reactive architecture
approach to build a system capable of responding quickly and elasti‐
cally, without the need to provision new infrastructure to handle the
load.

Data-driven decisions are good, but data-driven decisions in near
real time are even better. This is where reactive microservices com‐
bine with artificial intelligence and machine learning in a reactive
system. Consumer credit companies are using this approach to
determine credit risk, shrinking processing time to mere minutes.

4 | Chapter 1: The Journey to Reactive Systems

https://oreil.ly/Jyx-E

CHAPTER 2

Defining Reactive Systems

Reactive systems are already in use in a wide variety of industries
and use cases. But, what makes them reactive systems? How is this
defined, and what makes a reactive system truly reactive? What tools
or implementations are needed to achieve this complete reactivity?

The Need for a Manifesto
Prior to 2013, reactive systems were virtually unknown. However,
today “reactive” has risen in popularity and is being adopted by
more and more Fortune 2000 companies. This is a direct response
to enterprises’ need to design and build applications capable of han‐
dling massively increased scale and quantities of data. However, this
widespread adoption has led to the creation of a huge variety of
implementations and various versions of “reactive.” So, how do we
define exactly what a standard reactive system is across the
industry?

In 2013, the Reactive Manifesto was created to do exactly this. This
manifesto was conceived with the aim of condensing all of the
knowledge we had accumulated as an industry in designing and
building highly reliable and scalable applications. It then distilled
this knowledge into a set of required architectural characteristics
that would make any application flexible, loosely coupled, and elas‐
tic. It also carved out a defined vocabulary to enable efficient and
clear communication between all participants, including developers,
project leaders, architects, and CTOs.

5

https://oreil.ly/AsuEt

The Reactive Manifesto lays out four key high-level characteristics
of reactive systems: they are responsive, elastic, resilient, and mes‐
sage driven (see Figure 2-1). Although there are dependencies
between them, these characteristics are not like the hierarchical tiers
in a standard layered application architecture; instead, they describe
design properties that should be applied across the entire technology
stack.

Figure 2-1. Traits of reactive systems

Reactive Systems Must Be…
To be truly reactive, a system must possess certain characteristics
that allow it to be as follows:

Responsive
This ensures that reactive systems provide rapid and consistent
response times and a consistent quality of service. This simpli‐
fies error handling (allowing potential problems to be detected
rapidly and dealt with effectively), builds end-user confidence,
and encourages their further interaction with the system.

Resilient
Resiliency ensures that reactive systems remain responsive in
the face of failure. This is achieved through the combined use of
replication, isolation, and delegation. Any failure must be con‐
tained within the originating component, isolating it from oth‐
ers to ensure that the failure doesn’t bring down the entire
system. Recovery of failing components is delegated to an exter‐
nal component so that the client of a component is not bur‐
dened with handling the failure. To ensure high availability,
replication is used where necessary.

6 | Chapter 2: Defining Reactive Systems

Elastic
Reactive systems must remain responsive even under varying
workloads and strains. Elasticity enables reactive systems to
react elegantly to changes in input rate by dynamically increas‐
ing or decreasing the resources allocated. This helps relieve con‐
tention points and bottlenecks, giving the system the ability to
shard or replicate components and distribute inputs among
them. Elasticity makes reactive systems as resource efficient as
possible.

Message driven
An asynchronous message-passing between microservices in a
reactive system establishes a boundary between components,
helping to ensure loose coupling, isolation, and location trans‐
parency. Without this decoupling, it would be impossible to
reach the level of compartmentalization and containment
needed for isolation and resilience. Asynchronous message-
passing also provides a means to delegate failures as messages.
This method of explicit asynchronous message-passing allows
for load management, greater elasticity, and load control by
shaping and monitoring the message queues in the system and
applying back pressure when necessary. This style of nonblock‐
ing communication also ensures that recipients of the messages
consume resources only when active, leading to lower system
overhead and more efficient use of resources. It also minimizes
congestion on shared resources in the system, which is one
of the biggest hurdles to scalability, low latency, and high
throughput.

Events Versus Messages
In the original version of the Reactive Manifesto, “event driven” was
one of the four characteristics specified instead of message driven. A
message in this scenario is an item of data that is sent to a specific
destination, whereas an event is defined here as a signal emitted by a
component of a system upon reaching a specified state. So, in a
message-driven system, addressable recipients lie dormant until
they receive messages and react accordingly. But in an event-driven
system, listeners are attached to the sources of events and invoked
when the event is emitted. The primary difference is that an event-
driven system focuses on the addressable event sources, whereas a
message-driven system concentrates on addressable recipients. The

Defining Reactive Systems | 7

reason for this replacement in the Reactive Manifesto was that mes‐
sages have a single clear destination, whereas events simply happen
for others to observe them. Furthermore, messaging is preferably
asynchronous, with the sending and the reception decoupled from
the sender and the receiver, respectively. Event-driven messaging is
still used as the communication implementation in reactive pro‐
gramming; we explain the difference between reactive systems and
reactive programming in the next section.

Scale Matters
With the creation of the Reactive Manifesto came many implemen‐
tations of reactive frameworks and toolkits, offering varying degrees
of “reactive.” Used in isolation, however, many of these common
“reactive” frameworks do not form a fully reactive system as defined
by the Reactive Manifesto.

Often when these common frameworks or tools are referred to as
“reactive” or claim to implement “reactive,” it’s not reactive systems
they’re referring to. These applications often use the broad term of
reactive to refer to reactive programming or reactive streams. But
what do these terms really mean, and how do they differ from reac‐
tive systems?

Attempting to Program Your Way into the
Reactive Trend
Reactive programming is a method for writing code based on react‐
ing to changes.

In technical terms, this is a paradigm in which declarative code is
used to construct asynchronous processing pipelines. Translated,
this is essentially the same process our minds perform when we try
to multitask. Rather than true parallel tasking, we actually switch
tasks and split those tasks during their duration. This enables us to
use our time efficiently instead of having to wait for the previous
task to complete. This is exactly what reactive programming was
created to do. It is an event-based model in which data is pushed to a
consumer as it becomes available, turning it into an asynchronous
sequence of events.

8 | Chapter 2: Defining Reactive Systems

Reactive programming is a useful implementation technique for
managing internal logic and dataflow transformation locally within
components (intercomponents), through asynchronous and non-
blocking execution. However, when there are multiple nodes, you
need to start thinking hard about things like data consistency, cross-
node communication, coordination, versioning, orchestration, fail‐
ure management, separation of concerns and responsibilities—in
short, system architecture. Reactive programming cannot address
these issues or create resiliency and elasticity within a system.
Instead, to maximize the value of reactive programming, we recom‐
mend it as a tool to build a reactive system.

Reactive Streaming
Reactive streaming is a specification designed to provide a standard
for asynchronous stream processing with nonblocking back pres‐
sure (in other words, flow control).

The Reactive Streams specification was created to govern the
exchange of stream data across an asynchronous boundary while
ensuring that the receiving side is not forced to buffer arbitrary
amounts of data. When handling “live” data, it is almost impossible
to predict the volume of data passing through the system at any
moment. This means that resource consumption has to be carefully
controlled to ensure that a fast data source does not overwhelm the
destination of the stream.

To tackle this, asynchrony is one of the essential components, ena‐
bling the parallel use of computing resources. It is equally important
that the protocol includes a mechanism for agreeing on the velocity
of the flow of data by applying back pressure. This prevents the
stream destinations from being overwhelmed by ensuring a fast sys‐
tem cannot overload a slower counterpart. Back pressure is a term
the software world borrowed from the world of fluid dynamics,
where it refers to the “resistance or force opposing the desired flow
of fluid through pipes.” Translated to software, this term applies to
the flow of data; thus the definition becomes “resistance or force
opposing the desired flow of data through software.”

If you embrace the Reactive Streams specification, it becomes possi‐
ble to bridge systems using fully asynchronous back-pressured real-
time streaming, improving the interoperability, reliability, and
performance of the system as a whole. However, reactive systems do

Scale Matters | 9

https://oreil.ly/hlV3P
https://oreil.ly/hlV3P
https://oreil.ly/YzYJT
https://oreil.ly/YzYJT
https://oreil.ly/e1sbe

not simply focus on reliability: they must also be elastic and
responsive. Reactive streaming does not enable these characteristics;
although is a useful tool, it does not, in itself, make a system
reactive.

10 | Chapter 2: Defining Reactive Systems

CHAPTER 3

Your Toolbox to Reactive

Now that you understand what a reactive system is and what it sets
out to achieve, how do you go about implementing it? Within this
chapter, we delve into tools and implementation patterns that you
can use to transform your application into a reactive system.

Getting Responsive: Concurrency and Parallelism
If it’s your goal to build responsive applications, the first order of
business is making sure you’re getting the most out of your hard‐
ware. We do this through concurrency and parallelism. Even though
these concepts sound like the same thing, there’s an important dis‐
tinction in the context of computer systems. For the moment, let’s
just focus on these concepts in the context of a single CPU.

Two tasks are said to be running concurrently when they begin, run,
and finish within the same time window. Parallelism is when two (or
more) tasks are running at the same time. Figure 3-1 illustrates the
difference between concurrency and parallelism.

Say you’ve been told to dig two holes and make progress on them
both along the way. To accomplish this, you take a shovelful from
hole A, then one from hole B, another from hole A, and so on. Every
time the boss comes back to check on you, they’d see both holes get‐
ting deeper; you’re working on them concurrently even though you
obviously can scoop a shovelful from only one hole at a time.

11

1 See Java Threads and Concurrency Utilities by Jeff Friesen (Apress, 2015).

Figure 3-1. Concurrency and parallelism

Now, say there is another member of the work crew with no work to
do at the moment. A smart boss would have them join in to dig with
you—that is, to work in parallel—to get the job done faster.

In the remainder of this chapter, we discuss patterns for improving
concurrency and parallelism in our applications, putting more
“workers” on the job at once (parallelism), and keeping them all
busy (concurrency) to get the job done faster and more efficiently.

Multithreading
Multithreading, an approach to programming in which two or more
tasks within a process run on their own thread, has long been used
as a way to achieve parallel execution within a compute platform. It
is generally accepted that multithreaded programming is difficult to
do well, but over the years good resources1 have been developed and
programming languages have evolved approaches to help make it a
little easier. For example, Java 7 introduced the Fork/Join frame‐
work, which allows users to take large tasks, recursively break them
down (or fork them) into smaller chunks, execute the subtasks in
parallel, and recursively put the results together (join them) into a
single result in the end. This is great for tasks that are generally
recursive in nature.

12 | Chapter 3: Your Toolbox to Reactive

Even with these helpers, multithreaded programming requires great
care to avoid race conditions and memory consistency prob‐
lems. The combination of shared state and multithreading can pro‐
duce wildly unexpected behavior in your applications unless you’re
careful. Also, the usual methods to protect yourself, like synchroni‐
zation and locks, can be difficult to implement and can impact
performance.

But there is a simpler, safer way to achieve parallelism.

The Reactor Pattern
The reactor pattern, illustrated in Figure 3-2 in its most basic form,
approaches both concurrency and parallelism. In the typical imple‐
mentation of the pattern, asynchronously received requests are
demultiplexed (in a sense, serialized) for processing. The event loop,
running on one thread, cycles through the incoming events and
handles them. Callback functions are registered for requests that will
result in a long-running task or blocking operation. The handle for
the event gets added to a queue. The event loop iterates through the
queue and will eventually observe the completion of the long-
running task, trigger a callback, and return the result to the
application.

Figure 3-2. The reactor pattern

Node.js is one implementation of the reactor pattern,
and its website does an excellent job of explaining how
this implementation works.

The Reactor Pattern | 13

https://oreil.ly/4LGtG

You might ask how this works in a “systems” context. How do you
scale a service built with the reactor pattern? Although it is possible
to create multiple instances of this pattern (to scale a given service),
it introduces external complexities: load balancing across instances
(relatively trivial) and management of state across instances (not
trivial at all).

The Multireactor Pattern
The multireactor pattern is an approach to taking fuller advantage of
the available compute resources on multicore, multithreaded pro‐
cessors. In its basic form, instead of one event loop, you have many;
the number usually depends on the number of cores on your
machine. Vert.x, an open source toolkit for building reactive appli‐
cations on the JVM, works in this way. For example, multiple event
loops each run on their own thread, delivering events/tasks to han‐
dlers and servicing them upon completion. Code with blocking calls
should be handled in the same manner as described earlier and run
asynchronously on a separate thread (taken from a predefined
thread pool).

Vert.x (Verticals)
Vert.x extends the multireactor pattern with a programming con‐
struct referred to as verticals. Although not “actors” in the strict
sense (which we discuss in the next section), the Vert.x documenta‐
tion describes a vertical as a “simple, scalable, actor-like deployment
and concurrency model out of the box.” Verticals are “chunks of
code” that are deployed within a Vert.x instance. Standard verticals
are assigned to an event loop when started and execute on the event
loop thread. The warnings are clear: don’t put blocking code here;
use a worker vertical. Worker verticals are run on a different thread
(never more than one thread concurrently). Verticals may be started
and stopped asynchronously and communicate asynchronously
over an event bus, giving you some of the basic building blocks to
create a reactive system.

The Actor Model
The actor model concept was introduced by Carl Hewitt, Peter
Bishop, and Richard Steiger in 1973 as an architectural foundation

14 | Chapter 3: Your Toolbox to Reactive

https://oreil.ly/JUDHQ
https://oreil.ly/bJe4b

for artificial intelligence. The model has been refined over the deca‐
des, and many excellent resources on the topic are now available.

In the actor model, actors are the fundamental unit of computation,
and they have some important qualities that make them especially
suitable to a distributed systems environment. First, actors are light‐
weight, loosely coupled, and maintain their own state. Second,
message-passing between actors is completely asynchronous and
without restriction to message ordering, making computations done
throughout a system of actors inherently concurrent. Also, because
interaction between actors is limited to message passing, they can be
distributed across nodes (servers, virtual machines, containers). The
result is a computational model that achieves concurrency, parallel‐
ism, and an inherent ability to scale horizontally.

The actor model does require you to think differently in your
approach to programming, but there are languages and frameworks
to help out.

Akka
Akka is an open source “toolkit for building highly concurrent, dis‐
tributed, and resilient message-driven applications” running on a
JVM. In addition to providing a hierarchical actor implementation
(essential for failure detection/recovery), Akka includes libraries for
actor cluster management, sharding, and persistence (invaluable for
distributing applications across compute resources).

Let’s go back to our discussion of concurrency, parallelism, and
threads. In Akka, a message dispatcher is central to how threads are
managed within an actor system. The dispatcher defines the execu‐
tor service to be used, the size of the thread pool, and how many
messages an actor may process before it relinquishes a thread. The
dispatcher assigns a thread to an actor only when it has a message in
its queue. The actor processes the messages and then gives back the
thread. The obvious advantage is that threads are consumed only
when there is actual work to be done. A less obvious advantage is
that idle actors remain in memory, meaning they are immediately
available for execution at all times. This presents little impact to sys‐
tem resources given that actors are quite small (less than one kilo‐
byte), even if there are hundreds of thousands of them on a given
node. The result is a highly efficient use of processor resources.

Akka | 15

https://oreil.ly/zTuMX
https://akka.io
https://oreil.ly/76toE

Summary
Each of the approaches outlined in this chapter can help you create
responsive and scalable applications; it is up to you to determine
which approach is best for your own use case. Multithreaded pro‐
gramming utilities in Java, for example, help attain a degree of con‐
currency and parallelism, but you must take care to avoid blocking
code, race conditions, and data consistency problems. The reactor
model, such as that used in Node.js, uses an event-loop approach to
keep the main thread of execution busy doing productive work
while shunting I/O or long-running tasks to a separate thread pool
to prevent blocking. The Vert.x multireactor pattern extends this
approach to take fuller advantage of available threads on modern,
multicore processor-based servers. Finally, in the actor model, as
implemented in Akka, for example, computations can proceed asyn‐
chronously and in parallel across the actor systems as available
threads are allocated to actors with work to do.

16 | Chapter 3: Your Toolbox to Reactive

CHAPTER 4

Putting Your Reactive
Toolbox to Work

You spent most of the previous chapter focused on how the techni‐
ques and tools in our reactive toolbox help us get the most work
out of your compute platforms. These help you to create an
efficient, responsive service, but that’s really not sufficient when
you’re aiming to create a reactive system. To create a fully reactive
system, you need to consider the messaging within and between
your services, the infrastructure it runs on, and the integration of
other capabilities.

Going from Services to Systems: Being
Message Driven
Microservices in a reactive system work together to achieve respon‐
siveness, resilience, and elasticity, and this is largely achieved
through being message driven. There are two levels of “message
driven-ness” that we look at now: intra-service, or how the compo‐
nents of a service communicate; and inter-service, or messaging
between services, as illustrated in Figure 4-1.

Creating multiple instances is one way of achieving scale and resil‐
ience within a given service. Ideally, you could scale your microser‐
vice in a way that’s transparent to other parts of the system. For
example, load balancing and routing between instances would be
handled internally by the microservice, and additional instances

17

would be spun up or down as needed in response to load and other
external conditions. None of this is trivial, but it’s made possible by
messaging between the elements that make up the microservice
collective.

Figure 4-1. Messaging within and between services

There are open source libraries that can help you. One example is
Akka, which provides libraries that allow you to manage the compo‐
nents of your microservice, actor systems in this case, as a “system of
systems.” Another open source library is Vert.x, which uses an event
bus between components of your microservices (verticals) and sup‐
ports both point-to-point and publish/subscribe (pub/sub)
messaging.

By default, both Akka and Vert.x support “best effort”
or “at most once” delivery of messages. This means
acknowledging that “failures happen,” so your applica‐
tion should be able to handle the potential for lost
messages between components of your service.

Messaging between services is a different matter, and durable mes‐
saging is a prerequisite for a microservice-based application, reac‐
tive or otherwise. This is where a pub/sub system is really useful. In
a pub/sub integration pattern, a microservice producing an event
(data) publishes it to an event bus, and services subscribed to that
event bus take note and consume the event or data. Communication
between microservices is completely asynchronous and location
independent. It is important that the event bus is “durable” so that
events persist long enough for subscribers to pick them up; in case
of a failure, the message stream can be reconstructed with the events

18 | Chapter 4: Putting Your Reactive Toolbox to Work

https://oreil.ly/Nu0Mo
https://oreil.ly/vESvV
https://oreil.ly/vESvV

intact. Apache Kafka is one of the better-known platforms for imple‐
menting durable pub/sub messaging.

Reactive streaming takes inter-service messaging to the next
level. As explained in Chapter 2, reactive streams implementations
give you a graceful way to handle unbounded streams of data across
asynchronous boundaries with back pressure. This makes it perfect
to integrate your reactive microservices with external systems and to
implement messaging between services within your reactive system.
There are several frameworks and libraries from which to choose
that implement the Reactive Streams specification, including Akka
Streams and Vert.x Reactive Streams.

What type of infrastructure will allow us to reap the full benefits of
this message-driven approach to application architecture?

Distributed Infrastructure
As the pure quantity of data and scale of connected devices, ses‐
sions, and transactions continue to rise at an exponential rate, busi‐
nesses have turned to distributed, cloud-based infrastructures to
build applications that can process these huge volumes of data and
support vast numbers of online users concurrently. Cloud native
systems have become the bread and butter of many applications.
However, getting the most out of this compute platform entails writ‐
ing highly concurrent, distributed software. That isn’t easy! It
requires properly handling threads, implementing synchronization,
preventing race conditions, dealing with persistence and state, scal‐
ing the application, and responding to failures. Fortunately, this is
exactly what reactive systems were designed for. Reactive systems
embrace distributed infrastructure, creating a consistent and
responsive experience that works as expected even in the face of fail‐
ure and unpredictable loads.

Orchestrated Cloud Infrastructure
How can you go about deploying and managing your reactive sys‐
tem in a cloud environment? The answer is containers and Kuber‐
netes. Containerization—packaging up your microservices and all
of their dependencies into lightweight packages that can run
anywhere—is a basic tenet of building cloud native software, and

Distributed Infrastructure | 19

https://oreil.ly/erQN8

Kubernetes has become the de facto open source standard for man‐
aging containerized applications in production.

Kubernetes is fundamentally a cluster orchestration system that
brings “reactive systems” characteristics to container management.
We touch on just a few basic Kubernetes concepts here, but there are
plenty of good resources available.

Here are the basics in a nutshell:

Clusters and nodes
A Kubernetes cluster consists of a set of nodes (VMs or physical
machines) on which Kubernetes services are running.

Pods
A pod is the fundamental unit of deployment in a Kubernetes
cluster. It essentially wraps one or more app containers along
with the necessary network and storage resources.

Controllers
Lastly, controllers are Kubernetes services that watch over the
cluster and take corrective action when the current state of the
cluster strays from the desired state.

The cluster management capacity of Kubernetes gives you both
resilience and elasticity at the infrastructure layer. Elasticity is
achieved with Kubernetes autoscaling, which can dynamically adjust
the number of nodes in your cluster as well as scale the number of
pods running in your cluster based on workload. Automated pod
recovery features enhance resilience by restarting failed pods or re-
creating pods that have been deleted. An application created with
reactive architectural principles will expand, contract, and redistrib‐
ute itself with changes in the underlying infrastructure.

Running your reactive microservices application on a Kubernetes
orchestrated infrastructure can provide multiple levels of resilience
and elasticity.

A blog series on IBM Developer illustrates the con‐
cepts described in this section. The series includes
code for a simple Akka application deployed to Kuber‐
netes as well as a simple tool to visualize the interac‐
tion of the Kubernetes pods, Akka clusters, and Akka
actors.

20 | Chapter 4: Putting Your Reactive Toolbox to Work

https://oreil.ly/u6KVZ
https://oreil.ly/73vX6
https://oreil.ly/ziWON

Reactive Meets Machine Learning
Now that we’ve covered the application architecture and infrastruc‐
ture approach for creating a responsive, elastic, and resilient applica‐
tion, the next step in your journey to become a cognitive business is
to instrument your application to take advantage of data-driven
insights in real time. This means combining vast amounts of data
with machine learning to make your reactive system “smarter” in
ways that create value for your customers.

First, we need to (briefly) introduce the concepts of machine learn‐
ing (ML) and ML models, given that these are the means to infusing
your applications with intelligence. ML is a subset of artificial intelli‐
gence that involves computers “learning” from exposure to data,
being trained to find patterns in the data. The result is a computa‐
tional model that can more or less correctly respond when new data
is provided. Models can be developed for identification (such as
image or voice recognition) or predictions (such as the weather).

Figure 4-2 illustrates the basic elements and flow of an ML-enabled
reactive system. It’s generalized to show devices as well as users as
sources of data on which the models are based.

Let’s say you are shopping at a brick-and-mortar store for new run‐
ning shoes and find a pair you like, but you don’t love the price. You
pull out your mobile phone and open an app for an online retailer to
see if it has the shoes at a better price. (Admit it. You’ve done
this.) The online retailer will have modeled your buying behaviors
and that of millions of others, so with the right supplemental data
(for example, your location near a running shoe store), it can
present you with an offer for a pair of great running shoes at an
attractive price even before you begin your search in its app. You’re
delighted.

It’s worth noting that ML-enriched applications can be created with
virtually any application technology. However, beginning from
within a reactive systems context gives you the ability to dynami‐
cally manage the entire ML model—serving life cycle: streaming
data from a wide array of sources, retraining models, and automati‐
cally redeploying them in real time.

Reactive Meets Machine Learning | 21

Figure 4-2. The ML-infused application flow begins in the lower right
with the model development. The model is created and trained (1)
using historical data, then deployed (2), and then made available to an
application. Data arrives into the system from users (3a) and other
sources (3b) and becomes the source data used by the model (4) to pro‐
duce a prediction, or recommendation (5). This additional data (6)
can be used to retrain the machine learning model to improve its
accuracy.

Resources for Further Learning
We’ve only just scratched the surface on this topic, so, here we
include a couple of good references by experts in this area: Fast
Data Architectures for Streaming Applications by Dean Wampler
(O’Reilly) and Serving Machine Learning Models by Boris Lublinsky
(O’Reilly). You can also find some additional resources on IBM
Developer to help you get to coding right away. First is an example
of streaming online retail store data into an analytics pipeline. Next
is a code pattern to help you use machine learning to develop a
product recommender. Taken together, these form two of the
important building blocks for our cognitive application example.

22 | Chapter 4: Putting Your Reactive Toolbox to Work

https://oreil.ly/xxKbR
https://oreil.ly/xxKbR
https://oreil.ly/VMLg9
https://oreil.ly/y9Y5c
https://oreil.ly/ZexwX
https://oreil.ly/ZexwX

Conclusions
Enterprises have been striving to create ultra-fast, ultra-responsive
applications since the dawn of the internet. But, with the vast num‐
ber of connected devices, huge quantities of data, and ever-growing
number of consumers of our applications, traditional methods of
trying to achieve this just don’t cut it. Reactive systems enable you to
achieve this responsiveness through elasticity and resiliency in an
autonomous, cost-effective manner—no longer are specialist teams
needed to redesign and redeploy applications when they need to
scale due to load changes; no longer do applications go down every
time a new feature is introduced. Throughout this report we’ve listed
the many benefits that reactive systems give your enterprise applica‐
tions—in summary, the ability to design and build truly responsive,
cognitive applications that manage themselves.

When Is Reactive Systems the Right Choice?
The right time to consider using reactive application architecture to
transform your enterprise applications into reactive systems is when
you begin caring about any of the cornerstones of the Reactive Man‐
ifesto—resiliency, elasticity, or responsiveness. If your application is
dealing with vast volumes of data and you want your system to
remain responsive and provide the same quality of service to every
user regardless of changes in load, reactive architecture is definitely
worth considering. Our old architecture patterns just weren’t
designed to cope with the changing world of data we live in and the
huge fluctuations in load on our systems.

Reactive isn’t for everyone, though, just as microservices are not the
answer to modernizing every application. Before jumping in, con‐
sider whether your enterprise cares about maintaining responsive‐
ness by having a more resilient and elastic system. If you do, maybe
it’s time you had a go at creating your own reactive system.

How to Get Started
You’ve seen that there are some important decisions to make before
diving into the design of your own reactive system. The first step
toward redesigning a traditional application into a reactive system is

Conclusions | 23

1 Event storming brings together the IT, business, and service delivery teams in a collab‐
orative workshop to model business processes. For an example, see https://oreil.ly/
mr83f.

deciding how best to split up your application. Event storming1

combined with domain-driven design are great techniques for
breaking down an application into its distinct business domains.

The next important decision is which programming framework to
use. There are many different ways to implement a reactive system.
We hope this overview has given you enough information and
resources to decide which implementation is best for you. Each pro‐
gramming framework achieves concurrency, parallelism, resiliency,
and messaging in a variety of ways and interacts with the underlying
infrastructure differently. So, it’s important to fully understand the
capabilities of the implementation you choose.

After you break down your application into its respective microser‐
vices and select your programming framework, it’s time to decide
which reactive patterns are best for your system. There’s a whole
laundry list of patterns that you can combine to build a reactive sys‐
tem. For example, Event Sourcing and Command Query Responsi‐
bility Separation (CQRS) are often used together to optimize
performance and scalability.

Additional Resources
IBM’s Reactive in Practice tutorial blog series goes into many of
these reactive patterns in depth, along with an example of migrating
a traditional application to a reactive system. It is a great place to
understand more about these patterns and help choose which you
may need. It can be used as a template to lead you through your
own transformation: simply Git clone the source code, rewrite it to
your favorite implementation, and edit it for your own application.
Finally, no list of references on reactive systems would be complete
without mentioning Reactive Microsystems by Jonas Bonér.

We hope this book has given you a solid understanding of what
reactive systems are and why they may just be the next step forward
in the evolution of your own enterprise systems. We wish you the

24 | Chapter 4: Putting Your Reactive Toolbox to Work

https://oreil.ly/mr83f
https://oreil.ly/mr83f
https://oreil.ly/6XaqN
https://oreil.ly/nQfO1
https://oreil.ly/nQfO1
https://oreil.ly/C7zZR
https://oreil.ly/zzhnM

best as you improve the responsiveness, resiliency, and elasticity of
your applications, providing better customer interactions.

Conclusions | 25

About the Authors
Grace Jansen is a developer advocate at IBM, having switched from
biology to software engineering since leaving university. She special‐
izes in advocating reactive application architecture and reactive
systems and is a seasoned speaker and regular presenter at interna‐
tional conferences. Her talks have gained popularity through their
use of biological analogies to link modern enterprise application
architecture to the natural world.

Peter Gollmar is an offering manager at IBM responsible for intro‐
ducing new products and developer offerings with strategic part‐
ners. He works with a talented team of developer advocates to
engage the community on reactive systems technologies. In previous
roles with IBM, Peter led business transformation initiatives using
IT to create new ways to deliver solutions to IBM’s clients.

	Cover
	IBM
	Copyright
	Table of Contents
	Foreword
	Preface
	Chapter 1. The Journey to Reactive Systems
	Microservices: So Many Choices
	When and Where Are Reactive Systems Applicable?
	Web/Mobile Commerce
	Data-Driven Decisions

	Chapter 2. Defining Reactive Systems
	Scale Matters
	Attempting to Program Your Way into the Reactive Trend
	Reactive Streaming

	Chapter 3. Your Toolbox to Reactive
	Multithreading
	The Reactor Pattern
	The Multireactor Pattern
	Vert.x (Verticals)

	The Actor Model
	Akka
	Summary

	Chapter 4. Putting Your Reactive Toolbox to Work
	Going from Services to Systems: Being Message Driven
	Distributed Infrastructure
	Orchestrated Cloud Infrastructure
	Reactive Meets Machine Learning
	Conclusions
	When Is Reactive Systems the Right Choice?
	How to Get Started

	About the Authors

