
Legend for Diagrams
Hook Flow diagrams

Lookup

Attribute Map

Continue
from

Previous Iterator
or Start of

AL

On Multiple
Entries*

Multiple
Entries Found?* Yes

No

On
Error

Add

Black arrows indicate normal flow.

Red arrows show error/exception flow. Errors can occur both in scripted
flow components, as well as in Integrator operations.

The Flow Endpoint symbol represents the start or end of the flow for a
flow diagram. The text contained in the symbol provides more information
about system state and behavior at this point.

These boxes represent scripted flow components, and are used for both
Attribute Maps and Hooks. Note that if a Hook is enabled, then control is
passed to the script in the Hook. If a Hook is not enabled, then the flow
continues past the Hook without executing it.

A few Hooks are mandatory and must be enabled, although they do not
need to actually contain any script. If a mandatory Hook is not enabled
and the flow reaches this point, then this is considered an error, and
control faults out to error handling.

This box represents an Integrator operation (these are available as
functions in the component Interface object. Note that Integrator
operations may also result in error flows.

Decision components represent logical branches in component flow
execution, depending on state information at this point.

The Continuation symbol indicates that the flow is continued on another
page that is common for one or more modes. The page being referenced
will appear in a label below this symbol.

This is a Continuation symbol that is used when the referenced page is
still part of the same component mode flow. The page being referenced
will appear in a label below this symbol.

Hook Flow rev. 7.0
20081028

Directory Integrator

For Each Non-Iterator

(Enabled)

Mode-
specific
Flow*

The yellow trapezoid describe flow which is detailed elsewhere (i.e. on
another page in this document. The optional rounded blue box includes
the

For Each Flow
component

(Enabled)

*Flow References

These yellow trapezoids
represent flows

found in
the AssemblyLine

components.

Initialization Flows
are found on the

pages entitled
Initialization & Close

Flows

Iterator Flow is
described on the
page for Iterator

Mode flow.

Mode-specific Flow
can be found

on the page(s)
for that component

Mode.

AssemblyLine Flow
Hook Flow diagrams

Work Entry

Available?+

Epilog -
Before Close

Hook Flow rev. 7.0
20081028

Directory Integrator

Active Iterator
Available? Yes

Work Entry
Exists?

No

Zero out Work Entry

Yes

Epilog -
After Close

Prolog -
Before

Initialization

Prolog -
After

Initialization

Yes

No

For Each component

(Enabled & Passive)

Initialization
Flow*

Process TCB

Load AL Configuration

Global
Prologs

Iterator
Flow*

Mode-
specific
Flow*

For Each component

(Enabled & Passive)

Close
Flow*

AL Termination

On Start of
Cycle

+Work Entry Available

This test checks to see if there
is an Entry object which
is to be used as work for

the new cycle.

This Entry can be provided
in a number of ways:

o an Initial Work Entry (IWE)
o via a call to task.setWork()
o using system.restartEntry()

Switch to next Iterator

No

Directory Integrator

Prolog -
Before

Initialization

Connector Initialization

Prolog -
After Selection

Connector in
Iterator Mode?

Prolog -
Before Selection

Yes

selectEntries() call

Prolog -
After Initialization

No

Continue from
AssemblyLine
Prolog - Before

Intialization

Continue to
AssemblyLine

Prolog
(After

Initialization)

Connector
Initialization Flow

Hook Flow diagrams

Hook Flow rev. 7.0
20081028

Available Objects

The work object is not
available in Initialization

Hooks (unless it is
provided as an

Initial Work Entry (IWE).

As always, if an
Error Hook

is enabled, the error
flow continues and
does not go to the

Error Flow.

No

Is Error
Handled (and not

re-thrown) in Hook
above?

Yes

Prolog
On Error

Abort
AssemblyLine
(AL On Error

will be
executed)

error

Available temporary
script variables

Error Handling

Please note that if the Prolog On
Error Hook is enabled, then control

is passed to back to the
AssemblyLine flow;

Otherwise, the AssemblyLine
aborts.

The error condition can be
passed on to next On Error

Hook (i.e. to the
AssemblyLine Error Hook)

by re-throwing the exception:

throw error.getObject(”exception”);

Furthermore, if an error occurs
in an On Error Hook, then

the AssemblyLine will also abort.

The error object (of type Entry) is
available throughout an

AssemblyLine, and provides
information about the error situation

through its attributes:
status, exception, class, message,

operation and connectorname.

The status attribute
will have the string value ”OK”

until an error situation arises, at
which time it is assigned

the value ”fail” and the other
attributes are added to error.

t

Directory Integrator

Connector
Close Flow
Hook Flow diagrams

Hook Flow rev. 7.0
20081028

Epilog -
Before Close

Connector Close

Epilog -
After Close

Continue from
AssemblyLine
Epilog - Before

Close

Continue to
AssemblyLine

Epilog
(After Close)

Available Objects

Close Hooks will
have access to the

last work Entry
processed by the

AssemblyLine

As always, if an
Error Hook

is enabled, the error
flow continues and
does not go to the

Error Flow.

No

Is Error
Handled (and not

re-thrown) in Hook
above?

Yes

Epilog -
On Error

Abort
AssemblyLine
(AL On Error

will be
executed)

error

Available temporary
script variables

Error Handling

Please note that if the Prolog On
Error Hook is enabled, then control

is passed to back to the
AssemblyLine flow;

Otherwise, the AssemblyLine
aborts.

The error condition can be
passed on to next On Error

Hook (i.e. to the
AssemblyLine Error Hook)

by re-throwing the exception:

throw error.getObject(”exception”);

Furthermore, if an error occurs
in an On Error Hook, then

the AssemblyLine will also abort.

The error object (of type Entry) is
available throughout an

AssemblyLine, and provides
information about the error situation

through its attributes:
status, exception, class, message,

operation and connectorname.

The status attribute
will have the string value ”OK”

until an error situation arises, at
which time it is assigned

the value ”fail” and the other
attributes are added to error.

t

On
Success

On
Error

End-Of-Flow

work conn

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

The information stored in
the conn object is

written to the data source by
the Add operation.

AddOnly Mode
Hook Flow diagrams

Continue
from

previous
component or

Start of
AL

Before Execute

Override
AddOnly
Enabled?

Yes

No

Override
AddOnly

Output
Attribute Map

Before Add

After Add

Add

Hook Flow rev. 7.0
20081028

Directory Integrator

Available temporary
script variables

On
Success

On
Error

End-Of-Flow

work conn

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

*The information stored in
the conn object is

slightly different in this
mode.

It is important to note that
the conn object serves
two different purposes
in Call/Reply mode:

1) Storing the call
attributes/parameters

defined in the
Output Attribute Map
to be transmitted by the

Call/Reply operation,

2) Receiving return
attributes/parameters that

will be accessed by the
Input Attribute Map
after the Call/Reply

operation

Call/Reply Mode
Hook Flow diagrams

Continue
from

previous
component or

Start of
AL

Before Execute

Override
Call/Reply
Enabled?

Yes

No
Override
CallReply

Output
Attribute Map

Before
Call/Reply

After
Call/Reply

Call/Reply

Hook Flow rev. 7.0
20081028

Directory Integrator

Input
Attribute Map

*

Available temporary
script variables

Answer
Received?

No Answer
Returned

Delete 2/2

Delete On
Error

End-Of-Flow

Delete Mode 1/2
Hook Flow diagrams

work conn

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

After the Build Link Criteria
operation, there is a script object

called search available
which gives you access to this

information (i.e. for use in
the Override Hook).

The record/entry matching
the Link Criteria (and that

is about to be deleted)
is available for scripting as

the conn object, and
Attribute Mapping is carried out

to allow your AssemblyLine
to use Attributes from

the Entry which is to be
deleted.

*On Multiple Entries

If more than one record/entry is
found that matches the Link Criteria

then the On Multiple Entries
Hook must also be enabled, or this

is treated as an error.

You can access the set of
records/entries found by using
either of these two Connector

functions:

getFirstDuplicateEntry()
or

getNextDuplicateEntry()

Each of these functions returns
an Entry object that can be used

to call a Connector Interface’s
data access methods

(.update(), delete(), etc.).

If you wish to proceed with
the delete flow/operation, then you

must set the current Entry
with the following Connector

function:

myConnector.setCurrent(myEntry)

If you do not set a current
Entry, then execution will
continue to On Success,

bypassing the rest of the mode-
specific flow.

Note:

Data sources behave differently
when multiple Entries are

to be handled.

Even if you select a specific
Entry as described above,

it is not recommended
that you continue with

the delete flow,
as this may result in

an error, or that the operation is
performed on multiple entries.

Continue
from

previous
component or

Start of
AL

Before Execute

Override
Delete

Enabled?
Yes

No

Lookup

Build Link Criteria

Multiple
Entries Found?*

Yes

No

Override
Delete

On Multiple
Entries*

Current Entry
Set?

Yes

No

Hook Flow rev. 7.0
20081028

Directory Integrator

Build Link Criteria

Before Lookup

On
Success

Available temporary
script variables

On
Success

On
Error

End-Of-Flow

Delete Mode 2/2
Hook Flow diagrams

work conn

Before Delete

Delete

After Delete

Input
Attribute Map

Hook Flow rev. 7.0
20081028

Directory Integrator

(cont’d)
Delete

Match Found?

Yes

No

On No Match

After Lookup

Available temporary
script variables

current

Delta 2/4 End-Of-Flow

On
Success

On
Error

Delta Mode 1/4
Hook Flow diagrams

Before Execute

Override
Delta

Continue
from

previous
component or

Start of
AL

Delta
Support

work

Override
Delta

Enabled?

No

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

After the Build Link Criteria
operation, there is a script object

called search available
which gives you access to this

information (e.g. for use in
the Override Hook).

Hook Flow rev. 7.0
20081028

Directory Integrator

Before Delta

Build Link Criteria

Available temporary
script variables

*Valid Operation Code

Be default, an exception is
thrown if Delta mode detects
that the work Entry does not
have a valid operation code

(for example, ”generic”).
Operation code detection

occurs after the
Before Execute Hook.

Delta mode can be configured
to ignore these Entries

instead.

Yes

Entry
Operation Code

Unchanged?

No

Invalid
Entry Operation

Code?*

Is Invalid
Code an
Error?

No

Yes

No

Yes

Yes

Delta Application

During Delta processing,
the necessary steps are taken to

prepare for for applying the
detected changes as efficiently

as possible.

For example, multi-value Attributes
require special handling so that

value-level Delta operation codes
are applied correctly.

conn

Delta 3/4End-Of-Flow

On
Success

On
Error

Delta Mode 2/4
Hook Flow diagrams

Lookup

Build Link Criteria

Multiple
Entries Found?

No

Apply
Delta

work

Current Entry
Set? No

Hook Flow rev. 7.0
20081028

Directory Integrator

*On Multiple Entries

If more than one record/entry is
found that matches the Link Criteria

then the On Multiple Entries
Hook must also be enabled, or this

is treated as an error.

You can access the set of
records/entries found by using
either of these two Connector

functions:

getFirstDuplicateEntry()
or

getNextDuplicateEntry()

Each of these functions returns
an Entry object that can be used

to call a Connector Interface’s
data access methods

(.update(), delete(), etc.).

In addition, conn may be
set to the desired Entry object by

calling the Connector’s setCurrent()
function:

myConnector.setCurrent(myEntry)

If no Entry object is
set, then execution will continue

to On Success, skipping the
rest of the mode-specific flow.

Note:

Please note that data sources
(and therefore related Connectors)

behave differently when
multiple Entries are to be handled.

Even if you set a specific
Entry as described above,

it is not recommended that you
continue with the delta

operation, as this may result in
an error, or that the operation is
performed on multiple entries.

Before Lookup

After Lookup

Available temporary
script variables

current

Entry
Operation Code

Add?

No

Yes

On Multiple
Entries*

Incremental
Modification
possible?#

No

Yes

(cont’d)
Delta

Support

Match Found?

No

On No Match

Yes

Yes

Yes

Build Link Criteria
#Incr. Mod. possible?

The Connector checks
to see if the underlying

system supports
incremental modifications.

For the LDAP Connector,
this will always be Yes.

For the JDBC Connector
the answer is currently

always be No.

conn

End-Of-Flow

On
Error

Delta Mode 3/4
Hook Flow diagrams

No

work

Hook Flow rev. 7.0
20081028

Directory Integrator

Available temporary
script variables

current

(cont’d)
Apply
Delta

Entry
Operation Code

Add?

Override
Add

Override
Add

Enabled?
Yes

Before Add

After Add

No

Add

Output
Attribute Map

Yes

Delta 4/4

Delta
Delete

After
Delta

Delta 4/4

On No Add

Yesconn Entry empty?

No

Continue
to next

component, next
AL section,

or start of next
cycle

work currentconn

Delta Mode 4/4
Hook Flow diagrams

End-Of-Flow

Override
Modify

Enabled?
Yes

No Modify
Override Script

Output
Attribute Map

Before Modify

On No Changes

After Modify

Modify*

After Delta

(cont’d)
Delta

Delete

Changes
Detected? No

Yes

On
Success

On
Error

Hook Flow rev. 7.0
20081028

Directory Integrator

Available temporary
script variables

*Modify operation

If the Connector supports Delta
directly, then this operation is
carried out by this specialized
behavior (for example, doing

an incremental modify operation
for an LDAP directory).

Otherwise, a standard modify
call is made.

(cont’d)
After
Delta

Entry
Operation Code

Delete?

Override
Delete

Enabled?
Yes

Before Delete

After Delete

No

Delete

Yes

Override
Delete

No

*After the End Of Data
hook, execution flow continues

as shown below:

Iterator Mode
Hook Flow diagrams

More Iterators in
Feeds section?

Yes

No

Continue to
next Iterator

End of
AssemblyLine

execution

work conn

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

The data read in by each
GetNext operation is

available in the conn object.

Note:

If a Connector in Iterator
mode detects the presence

of a valid work object at
the start of its execution -

for example, that there
is another Iterator in

front of this one in the same
AssemblyLine, or that the

initial work Entry has
been passed into the

AssemblyLine from a calling
process or system -

then this Connector will
not be executed, passing

instead this Entry to
the next Connector in the

AssemblyLine.

The sidebar below
illustrates what happens
when an Iterator reaches

its end-of-data. At this
point it will not pass

a work object to
the next Connector, which

in the case of another
Iterator, will signal it

to begin its own
iteration.

Before Execute

Override
GetNext

Enabled?

Override
GetNextBefore GetNext

After GetNext

No

GetNext

Input
Attribute Map

Continue
from

previous
component or

Start of
AL

On
Success

On
Error

End-Of-Flow

Hook Flow rev. 7.0
20081028

Directory Integrator

End of Data?

No

End Of Data*

Yes

End Of Data

Yes

Available temporary
script variables

work conn

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

After the Build Link Criteria
operation, there is a script object

called search available
which gives you access to this

information (i.e. for use in
the Override Hook).

The record/entry matching
the Link Criteria is

available through the
conn object.

*On Multiple Entries

If more than one record/entry is
found that matches the Link Criteria

then the On Multiple Entries
Hook must also be enabled, or this

is treated as an error.

During this hook, conn may be
set to the desired Entry object by

calling the Connector’s setCurrent()
function:

myConnector.setCurrent(myEntry)

You can access the set of
records/entries found by using
either of these two Connector

functions:

getFirstDuplicateEntry()
or

getNextDuplicateEntry()

Each of these functions returns
an Entry object that can be used

in the setCurrent() call.

If setCurrent() is not called
(e.g. no current entry is set)
then the flow is passed on to

On Success, skipping
the rest of the mode-specific

flow.

Lookup Mode
Hook Flow diagrams

Continue
from

previous
component or

Start of
AL

Before Execute

Override
Lookup

Enabled?

No

Lookup

Override
Lookup

Build Link Criteria

Before Lookup

Build Link Criteria

After Lookup

Input
Attribute Map

Multiple
Entries Found?*

On Multiple
Entries*

Yes

No

On
Error

End-Of-Flow

On
Success

Match Found?

On No Match

No

Yes

Yes

Current Entry
Set?

Yes

No

Hook Flow rev. 7.0
20081028

Directory Integrator

Available temporary
script variables

current

Available Objects

The only temporary Entry object
is conn, which is available in the

After Accepting Connection
Hook.

This Entry contains a single
Attribute called

connectorInterface

Its only value is a reference
to the Connector Interface
that will be paired up with
the Flow component list in

in Iterator Mode
to feed it with event data.

Server Mode
Hook Flow diagrams

Launched
from

Feeds
list

Before
Accepting

Connection

After
Accepting

Connection

Accept Connection

On
Error

End-Of-Flow

Hook Flow rev. 7.0
20081028

Directory Integrator conn

Available temporary
script variables

Server Behavior

Server Mode Connectors
do not run exclusively

like Iterators do.
Instead, each is launched as

a separate process in
event listening mode and

control is passed to the
next Feeds Connector.

When an event is detected
(for example, a client attempts

to connect) then the
Connector creates a clone

of itself in Iterator Mode
once the

After Accepting Connection
Hook has completed.

This cloned Iterator is then
paired up with the

AssemblyLine Flow component
list (possibly from the AL Pool)

and Hook flow continues as
with standard Iterator mode.

Furthermore, once the Flow
section of the AssemblyLine
completes, control is passed

to the Server Response
logic which then creates and
sends the required reply to

the caller/client system.

The Response Hook flow is
detailed on the page

entitled Server Response.

work conn

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

The information stored in
the conn object is

sent to the data source by
the Reply operation.

Continue
from

last Flow
component

Before Execute

Override
Reply

Enabled?
Yes

No

Override
Reply

Output
Attribute Map

Before Reply

After Reply

Reply

Server Response
Hook Flow diagrams

Directory Integrator

Available temporary
script variables

Hook Flow rev. 7.0
20081028

On
Error

End-Of-Flow

Reply
Successful

Continue
to start of next

cycle

Update 3/3

Modify

conn

Update 2/3 End-Of-Flow

On
Success

On
Error

Update Mode 1/3
Hook Flow diagrams

Before Execute

Override
Update

No

Lookup

Continue
from

previous
component or

Start of
AL

Build Link Criteria

No

Yes

Multiple
Entries Found? Yes

On Multiple
Entries*No

Add

work

Match Found?

Override
Update

Enabled?
Yes

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

After the Build Link Criteria
operation, there is a script object

called search available
which gives you access to this

information (e.g. for use in
the Override Hook).

Current Entry
Set?

Yes

No

Hook Flow rev. 7.0
20081028

Directory Integrator

*On Multiple Entries

If more than one record/entry is
found that matches the Link Criteria

then the On Multiple Entries
Hook must also be enabled, or this

is treated as an error.

You can access the set of
records/entries found by using
either of these two Connector

functions:

getFirstDuplicateEntry()
or

getNextDuplicateEntry()

Each of these functions returns
an Entry object that can be used

to call a Connector’s
data access methods

(.update(), delete(), etc.).

In addition, conn may be
set to the desired Entry object by

calling the Connector’s setCurrent()
function:

myConnector.setCurrent(myEntry)

If no Entry object is
set, then execution will continue

to On Success, skipping the
rest of the mode-specific flow.

Note:

Please note that data sources
(and therefore related Connectors)

behave differently when
multiple Entries are to be handled.

Even if you set a specific
Entry as described above,

it is not recommended that you
continue with the update

operation, as this may result in
an error, or that the operation is
performed on multiple entries.

Before Update

Before Lookup

After Lookup

Build Link Criteria

Available temporary
script variables

current

Update Mode 2/3
Hook Flow diagrams

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

If the Update results in
an Add operation,

conn holds the data that is
written to the data source.

After
Update

Update 3/3End-Of-Flow

On
Error

Add Override
Script

Override
Add

Enabled?
Yes

Before Add

After Add

No

Add

Output
Attribute Map

(cont’d)
Add

connwork

Hook Flow rev. 7.0
20081028

Directory Integrator

Available temporary
script variables

conn Entry empty?

On No Add

No

Continue
to next

component, next
AL section,

or start of next
cycle

Yes

work currentconn

Update Mode 3/3
Hook Flow diagrams

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

If the update results in
a Modify operation,

the current object gives you
access to the record/entry

in the connected data source that
matched the Link Criteria

(e.g. is about to be modified).
Note that until the Output

Map, both conn and current
contain the same information.

As in the case of an Add,
the conn object holds the

information that is to
be written to the data source,

in this case, by the Modify
operation.

The conn object

The conn object is emptied
immediately before

the Output Map. After
this point, conn and current

no longer contain the
Entry object found by
the lookup operation.

End-Of-Flow

Override
Modify

Enabled?
Yes

No Modify
Override Script

Output
Attribute Map

Before Modify

Compute
Changes?

On No Changes

After Modify

Before Applying
Changes

Modify*

After Update

(cont’d)
Modify

(cont’d)
After

Update

Changes
Detected?

NoNo

Yes

Yes

*Modify

Please note that some
data sources will compute

changes automatically,
and if none are detected,

will revert with a
No Changes exception.

This will cause flow
to be directed to the

On No Changes
Hook.

On
Success

On
Error

Hook Flow rev. 7.0
20081028

Directory Integrator

Available temporary
script variables

conn Entry empty?

End-Of-Flow for All
Connector Modes

Hook Flow diagrams work

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine,.

The conn and curent objects
are available in the

On Error and On Success
Hooks if they were present

previously in the flow

End-Of-Flow

This flow applies to all
components that either terminate

normally (e.g. successfully) or
due to an error.

Error Handling

Please note that if either On Error
Hook is enabled, then control is
passed to the next component,

as if the Connector had terminated
successfully; Otherwise, the

AssemblyLine aborts.

The error condition can be
passed on to next On Error

Hook (either the Default
for the Connector, or the

AssemblyLine Error Hook)
by re-throwing the exception:

throw error.getObject(”exception”);

Furthermore, if an error occurs
in an On Error Hook, then

the AssemblyLine will also abort.

The error object (of type Entry) is
available throughout an

AssemblyLine, and provides
information about the error situation

through its attributes:
status, exception, class, message,

operation and connectorname.

The status attribute
will have the string value ”OK”

until an error situation arises, at
which time it is assigned

the value ”fail” and the other
attributes are added to error.

t

(Mode-Specific)
On Success

(Default)
On Success

Abort
AssemblyLine
(AL On Error

will be
executed)

Continue
to next

component, next
AL section,

or start of next
cycle

(Mode-Specific)
On Error

(Default)
On Error

Yes

Is Error
Handled (and not

re-thrown) in Hooks
above?

No

On
Success

On
Error

error

Hook Flow rev. 7.0
20081028

Directory Integrator

Available temporary
script variables

AssemblyLine
End-of-Flow

If the AssemblyLine
completes without

unhandled errors, the
AssemblyLine

On Success Hook
is invoked.

Otherwise, if an error
has occurred than

control is passed to
the AsemblyLine
On Error Hook.

Return to
the point after

where this error
originated

Connector Reconnect
Hook Flow diagrams

Connection
Failure

Detected

On Connection
Failure

Auto Reconnect*

Hook Flow rev. 7.0
20081028

Directory Integrator

Retry
Connector
Interface

Operation

Auto
Reconnect
Enabled?

Yes

No

Connection
Restored?

Yes

No

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine,.

The error object (of type Entry) is
available throughout an

AssemblyLine, and provides
information about the an error
situation through its attributes:

status, exception, class, message,
operation and connectorname.

The status attribute
will have the string value ”OK”

until an error situation arises, at
which time it is assigned

the value ”fail” and the other
attributes are added to error.

*Auto Reconnect

The Auto Reconnect feature
is configured through the
parameters found in the

Connector Reconnect tab.

These parameters control
the maximum number of times

a reconnect will be tried,
as well as the number

seconds to wait between
each attempt.

Abort
AssemblyLine
(AL On Error

will be
executed)

(Default)
On Error

At Least One
On Error Hook

Enabled?

Yes

No

Return to
the point after

where this error
originated

work conn

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

*The information stored in
the conn object changes

during FC operation.

It is important to note that
the conn object serves
two different purposes

in a Function:

1) Storing the call
attributes/parameters

defined in the
Output Attribute Map
to be transmitted by the
Function call operation,

2) Receiving return
attributes/parameters that
will be mapped in by the

Input Attribute Map
after the Function call

operation

Function (FC)
Continue

from
previous

component or
Start of

AL

Before Execute

Output
Attribute Map

Before
Call

After
Call

function call

Hook Flow rev. 7.0
20081028

Directory Integrator

Input
Attribute Map

*

Available temporary
script variables

Answer
Received?

No Answer
Returned

No

Yes

(Default)
On Success

Abort
AssemblyLine
(AL On Error

will be
executed)

Continue
to next

component, next
AL section,

or start of next
cycle

No

error

Is Error
Handled (and not

re-thrown) in Hook
above?

Yes

(Default)
On Error

Function
Success

Function
Error

