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Notices
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COPYRIGHT LICENSE:
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Therefore, organizations must start protecting their sensitive data today by using 
quantum-safe cryptography.

This IBM® Redbooks® publication reviews some potential threats to classical cryptography 
by way of quantum computers and how to make best use of today’s quantum-safe capabilities 
on the IBM Z platform. This book also provides guidance about how to get started on a 
quantum-safe journey and step-by-step examples for deploying IBM Z® quantum-safe 
capabilities.
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administrators, and anyone who needs to plan for, deploy, and manage quantum-safe 
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Chapter 1. Cryptography in the quantum 
computing era

For decades, organizations used cryptographic algorithms to protect their most sensitive data 
and communications in computer systems, networks, and storage devices. Imagine if an 
adversary or cybercriminal can break those cryptographic algorithms that you relied on for 
many years. What are the potential impacts on your business? 

Once considered impossible, attacks that can compromise today’s cryptographic algorithms 
can become possible with a powerful quantum computer. Your protected data can be stolen, 
exposed, altered, disabled, or destroyed through new attack vectors that increased in the 
quantum computing era.

Although quantum computers are still in their early stages of adoption, their use soon will be 
more widespread. A single quantum computer can be capable of performing millions of 
computations simultaneously. 

Because quantum computers deal with probabilities, the problems they are good at solving 
are exponential in nature. That is, today’s cryptographic algorithms might be threatened by 
quantum computers, potentially exposing sensitive data. 

Attackers are already harvesting protected data in anticipation of cracking the protection 
algorithms sometime in the future. Therefore, it is important to take action now: assess the 
cryptography methods that are used today to protect your data, applications, and systems; 
understand the vulnerabilities in the quantum computing era; and evaluate the quantum-safe 
capabilities that are offered with the IBM Z platform. 

This chapter includes the following topics:

� 1.1, “When will quantum computers break cryptography” on page 2
� 1.2, “Why are quantum computers a threat” on page 4
� 1.3, “Impact of Shor’s and Grover’s algorithms” on page 7
� 1.4, “Cryptographic vulnerabilities possible with quantum computers” on page 9
� 1.5, “New algorithms to counter CRQC attacks” on page 11
� 1.6, “Quantum-safe capabilities with IBM Z” on page 13

1
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1.1  When will quantum computers break cryptography

The question of when quantum computers might break cryptography is often asked, but 
unfortunately presents the threat as being in the future. Consider the following point from the 
World Economic Forum, which was held in May 2021[1]:

For data that will require protection for decades, the threat is today. The impact is in the 
future. 

Many IT decision-makers plan to retain their data 11+ years into the quantum era as per the 
IBM MD&I survey2. Their data includes personal identifiable information (PII), trade secrets, 
intellectual property, and other sensitive digital assets. This information already is at risk 
because they need to store it and keep it confidential for decades. 

Although cybercriminals cannot easily break most encrypted data today, they might be able to 
decrypt that data in the future by using a large quantum computer, also known as a 
cryptographically relevant quantum computer (CRQC)3. Because it is unknown when YQK4 
will happen, it is best to start looking at ways to protect your data now:

Act now—it will be less expensive, less disruptive, and less likely to have mistakes caused 
by rushing and scrambling.5

1.1.1  Business risks

The cost of data breaches continues to increase, with strong encryption being the top 
mitigating cost factor. The global average total cost of a data breach is $4.24 million per the 
Ponemon Cost of a Data Breach 2021 Study. 

Organizations that use strong encryption (such as AES with 256-bit keys) for data at-rest and 
in-flight, had an average total cost of a breach of $3.62 million, compared to $4.87 million for 
organizations that use weak or no encryption, which results in a difference of $1.25 million or 
29.4%.

Most businesses expressed shared concerns for data, system integrity, and software 
verification at risk with the potential threats of CRQC attacks. They recognized CRQC attacks 
as a cybersecurity6 risk. However, organizations are just beginning the cryptographic 
inventory7 phase of a quantum-safe journey. 

Additionally, many organizations operate within highly regulated industries and must comply 
with standards. The National Institute of Standards and Technology (NIST) has a 
post-quantum cryptography standardization process to identify algorithms that are resistant to 
attacks that might be started from quantum and conventional computers. BSI, a German 
federal agency, requires the use of hybrid schemes in which both classical and quantum-safe 
algorithms are used for protection in high-security applications. 

1  Reference Is your cybersecurity ready to take the quantum leap? (2021)
2  An IBM Marketing study
3  CRQC is used to specifically describe quantum computers that are capable of breaking cryptographic algorithms 

used on conventional computers.
4  YQK is a colloquial term, in reference to Y2K, used by Dario Gil, IBM SVP and Director of Research to describe the 

point at which quantum computers could be powerful enough to brute force their way through today's encryption. 
(The Hill: YQK is coming — time to get ‘quantum-safe’ )

5  Reference NIST PQC Standardization Update-Round 2 and Beyond (2020)
6  Cybersecurity is the practice of defending computers, servers, mobile devices, electronic systems, networks, and 

data from malicious attacks.
7  Cryptographic inventory is a strategic cybersecurity asset. It enables an organization to enforce a secure 

cryptographic policy across IT infrastructure and react quickly to security issues; efficiently carry out strategic 
transformations, such as migrating cryptography services to the cloud or deploying post-quantum cryptography.
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The post-quantum cryptography standards and work groups are to be the business driver for 
security policy changes and crypto migration planning. 

IT executives can proactively mitigate the risk of business disruptions that are caused by 
CRQC attacks. Currently, some organizations decentralized small-size crypto groups that are 
scattered across the IT business units, which causes disconnection and inertia against 
cryptographic agility8. Many IT organizations still do not have a comprehensive view of the 
cryptography in use in their institution because they lack cryptographic inventory tools and 
skills for the broad cryptography landscape. 

A few cryptographic services groups implemented proprietary crypto libraries and abstraction 
layers that simplified managing the crypto updates and prepared them for cryptographic 
agility. Businesses, such as banks, expressed concerns about the effect of quantum-safe 
algorithms on system performance and latency. 

Organizations, such as automobile manufacturers, must deal with programming resource 
constraints, such as key length size and RAM, to accommodate the use of public key 
quantum-safe algorithms and schemes in their new application development process. 

Organizations also are interested in quantum-safe encryption to protect their long-lasting 
sensitive data and future-proof it. Quantum-safe readiness is on most organizations’ 
roadmap. Some already benchmarked quantum-safe algorithms and explored cryptographic 
inventory tools for application modernization. 

1.1.2  Quantum threats and implications on data and identity

What will a cybercriminal be able to do with a quantum computer? Why do organizations 
need to act now? Why is the data at risk9 today?

A cybercriminal who uses a powerful quantum computer to break the current cryptography 
features the following the threats10 and implications:

� Passive attacks on confidentiality

Cybercriminals might harvest data communications, recover session keys from encrypted 
channel negotiation, and decrypt communication transmissions. They can steal snapshots 
of encrypted cloud data, extract keys that are protected by using public keys, and conduct 
retrospective decryption. 

Cybercriminals might decrypt lost or harvest historical data through cracking encryption 
keys. An organization’s sensitive data that is protected by using today’s cryptography 
might be vulnerable in the future. Encrypted data that is stolen during a data breach and 
encrypted media that is improperly disposed or stolen are both at risk. 

� Impersonation attacks on identities

Cybercriminals might create fraudulent code updates, insert malware, change 
configuration settings, and create damage. They might transfer assets on a blockchain or 
manipulate updates and forge transactions through fraudulent authentication. With 
quantum threats, identity over the internet and software authenticity cannot be 
guaranteed. 

8  Cryptographic agility is about an information security system rapidly switching to alternative cryptographic 
primitives and algorithms without making significant changes to the system’s infrastructure.

9  A measure of the extent to which an entity is threatened by a potential circumstance or event, and typically a 
function of the adverse impacts that can arise if the circumstance or event occurs; and the likelihood of occurrence.

10  Any circumstance or event with the potential to adversely impact organizational operations, organizational assets, 
individuals, other organizations, or the Nation through a system by way of unauthorized access, destruction, 
disclosure, modification of information, or denial of service.
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Cybercriminals might impersonate a remote system or user and authenticate access, and 
control systems. They can remotely control critical business infrastructure or transport 
infrastructure. Systems that organizations are building today are at risk. 

� Manipulate legal history by forging digital signatures

Cybercriminals might carry out fraudulent authentication by deriving private keys from 
public keys. The legal underpinnings of digitalization are vulnerable because documents 
can be forged by using a derived private key. Also, a guarantee of proof of authorship or 
integrity no longer exists.

1.2  Why are quantum computers a threat 

Cryptographic algorithms are based on mathematics, and with enough time and computing 
resources they can be broken. Improvements in cryptographic algorithms always were 
needed over time, as computers and digital circuits increase in speed and capacity. 

However, the nature of the mathematical algorithms that can be used on quantum computers 
is fundamentally different from what can run on conventional computers. Unfortunately for 
cryptography, specific algorithms that run on quantum computers can be efficient at breaking 
some current cryptographic algorithms. 

To help understand how quantum computers are relevant to breaking current cryptography, 
we first need to recognize the different types of computers and how they work. These 
computers are sorted into the following categories:

� Conventional computers

These computers are the computers that we use every day. Their circuits operate on 
binary values (bits) that can have only two states: a zero (off) or a one (on). Algorithms are 
implemented as sequences of computer instructions that operate on these binary values. 

� Supercomputers

A supercomputer is essentially a large and tightly coupled set of conventional computers, 
with high-speed communications between them. They reduced or offloaded input/output 
(I/O) routines by design to free up CPU cycles. Supercomputers are often used to solve 
problems that can be deconstructed into many separate computations, which are carried 
out in parallel on their computing nodes.

� Quantum computers

Quantum computers process data by using an entirely different mechanism than 
conventional computers and supercomputers. Rather than representing data as binary 
values (bits) that can have only two states, the property of superposition conceptually lets 
quantum computers have an exponentially large number of possible compute states as 
more of their quantum bits (or qubits) are entangled11. Hence, the more qubits a quantum 
computer has available, the faster it can crack cryptographic algorithms. 

The computational power of quantum computers is growing rapidly. In 2021, IBM launched 
the 127 qubit Quantum Eagle processor with novel packaging and controls. In 2023, IBM 
is to debut the 1,121 qubit Quantum Condor processor to explore potential Quantum 
Advantages–problems that we solve more efficiently on a quantum computer than on the 
world’s best supercomputers. 

11  Quantum entanglement allows qubits to be perfectly correlated with each other. Using quantum algorithms that 
exploit quantum entanglement, specific complex problems can be solved more efficiently than on classical 
computers. For the technical definition, see: 
https://quantum-computing.ibm.com/composer/docs/iqx/terms-glossary#term-entanglement
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Figure 1-1 shows the development roadmap of IBM Quantum.12 

Figure 1-1   Roadmap for scaling IBM quantum technology

For a report on estimates of quantum resilience for current cryptosystems, see Quantum 
Computing’s Implications for Cryptography13.

1.2.1  Cryptography overview

Various methods were used for thousands of years to protect information when it is stored or 
sent to other people. Early methods were simple, like the Caesar Cipher, but they increased 
dramatically over time, particularly as the attackers improved their ability to break the codes. 
The fundamental feature of all cryptographic algorithms is the use of functions that are easy 
to compute if you know the cryptographic key, but difficult if you do not know the key.

The cryptographic algorithms are used for the following types of protection:

� Confidentiality: This process keeps data secret from people who are not authorized to see 
it. The unencrypted data is called plain text, and the encrypted data is called ciphertext.

� Integrity: This ability is used to prove that data was not modified.

� Authentication: This ability is used to prove who someone is, or who created a piece of 
data.

� Nonrepudiation: This ability is used to prevent someone from claiming they did not create 
a particular specific piece of data.

The cryptographic algorithms fall into the following categories, which are described next:

� Symmetric cryptography
� Asymmetric cryptography
� Hashing algorithms

12  See: https://research.ibm.com/blog/ibm-quantum-roadmap-20
13  National Academies of Sciences, Engineering, and Medicine. Quantum Computing: Progress and Prospects. 

Washington, DC.
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Symmetric cryptography
Symmetric cryptography is used to encrypt and decrypt data. It is called symmetric because 
the same key is used for encryption and decryption. Symmetric algorithms are generally fast, 
and are used for everything from encrypting communications links to protecting banking 
transactions.

In addition to encryption of data, the symmetric algorithms are used to construct methods of 
providing integrity, authentication, and other operations that are important to security. For 
integrity, these functions are called Message Authentication Codes (MACs).

The following symmetric cryptographic algorithms are most commonly used today:

� Triple-DES (TDES, 3DES, or TDEA)

TDES is an older algorithm, which is gradually being phased out and replaced with the 
newer and stronger AES. TDES uses a key that is 112 bits or 192 bits long, and encrypts 
data in 64-bit blocks. 

� Advanced Encryption Standard (AES)

AES use keys that are 128 bits, 192 bits, or 256 bits, and it encrypts data in 128-bit blocks. 
The larger key lengths and encryption block sizes make AES stronger than TDES. AES 
also eliminates some design issues in TDES that make TDES susceptible to specific 
classes of attacks.

The symmetric algorithms use complex mathematical and logical operations to combine the 
data and the key in such a way that the ciphertext appears to be random values. With a strong 
algorithm, the ciphertext cannot be examined and anything about the plain text or the key 
cannot be determined. 

Therefore, the only way to break the algorithm is to try all possible keys until you find the one 
that works. On the average, this effort often means trying half of the possible keys. For 
example, with AES using a 256-bit key, you must try an average of half of the 2256 possible 
keys, which is a huge number.

Asymmetric cryptography
In asymmetric cryptography, which is also known as public key cryptography, two keys are 
used in combination. This configuration contrasts with symmetric key cryptography, where the 
same key is used for all operations. The asymmetric keys come in pairs that are known as the 
public key and private key, which are mathematically related. 

As the names imply, the public key can be seen by anyone, while the private key is kept 
secret. The owner of the key generates the public and private keys together; then, it keeps the 
private key secret while distributing the public key to anyone who needs it. It is impossible to 
determine the value of the private key from the public key.

Several asymmetric cryptographic algorithms are commonly used. The two most common are 
Elliptic Curve Cryptography (ECC), and RSA, which is named for its inventors Rivest, Shamir, 
and Adleman. Unlike symmetric algorithms, differences exist in what the distinct asymmetric 
algorithms can do.

ECC is based on the mathematics of elliptic curves. The curves are defined by polynomials, 
and the ECC algorithm is based on multiplication of points on the curve. When a point is 
multiplied by itself, the result is another point on the curve. When this multiplication occurs 
many times, it is difficult to look at the final point that results from the multiplications and 
determine anything about the original point. 
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The Elliptic Curve Digital Signature Algorithm (ECDSA) is used to compute and verify digital 
signatures by using ECC mathematics. 

The Elliptic Curve Diffie Hellman (ECDH) algorithm is used to negotiate shared symmetric 
encryption keys between two parties. It is notable that mathematics of ECC do not provide a 
way to encrypt and decrypt data. This creation is possible only by using ECC if you first create 
a shared encryption key by using ECDH or a similar method and then, encrypt the data by 
using that shared key with a symmetric algorithm, such as AES.

The security of RSA is based on the difficulty of factoring large numbers. The public key and 
private key are each consist of a modulus and an exponent, where the modulus is the same 
for each, but the public exponent and private exponent are different. The modulus is the 
product of two large prime numbers, and security is based on the fact that it is infeasible to 
factor the modulus to find those two large primes. 

RSA encryption and decryption are based on modular exponentiation, where the value to be 
encrypted is raised to the public or private exponent, but that computation is done by using 
modular arithmetic that constrains the result to be less than the value of the modulus. 

Whenever a value is raised to an exponent and then truncated according to the modulus, 
information is lost, which makes the process difficult to reverse. RSA can be used to directly 
encrypt data, and it is used for digital signatures by encrypting a hash of the data you want to 
sign. It is also frequently used to encrypt keys to transport them to other parties.

Hashing algorithms
A hash algorithm does not “encrypt” data; instead, it creates a fixed-length digital “fingerprint” 
(called a hash) from input data of any length. If even one bit of the input data is modified, the 
computed hash is entirely different. 

Cryptographic hash functions meet two criteria: First, if you know the hash value, you cannot 
use it to learn anything about the content of the data that was hashed. Secondly, it is 
infeasible to find a different set of data that produces the same hash value.

Recommended hash functions today are the SHA-2 and SHA-3 families, which offer versions 
that create hashes 224 bits - 512 bits. The older hash functions SHA-1 and MD5 are no 
longer considered secure, although they are still in use in some applications.

1.3  Impact of Shor’s and Grover’s algorithms

When available, a sufficiently strong quantum computer can perform specific mathematical 
computations exponentially faster than a conventional computer or supercomputer. The most 
powerful conventional computer can take millions of years to solve the integer factorization 
problem to find prime factors for a 2048-bit composite integer. 

The use of a quantum computer with Shor’s and Grover’s algorithms can break or weaken 
some current cryptographic algorithms. Shor's and Grover's are cryptanalysis algorithms 
when run on quantum computers.

Asymmetric algorithms derive security strength from one of three complex mathematical 
problems:

� Integer factorization
� Discrete logarithm 
� Elliptic curve discrete logarithm 
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Examples of asymmetric algorithms and protocols are RSA, ECC, DH, ECDH, and ECDSA. 
Consider RSA, which derives its strength from the difficulty in solving the integer factorization 
problem. It is easy to multiply primes but difficult to take a composite integer and reduce it 
back to the prime factors. The difficulty in factoring rises exponentially (not linearly) as the 
number of bits in the key increases. The typical RSA key is 2048 bits. It is not possible with 
today’s conventional computers to factor an integer with 2048 bits.

A sufficiently strong quantum computer can solve the factoring problems within hours with 
Shor's algorithm because it provides an exponentially faster method for solving integer 
factorization, discrete logarithm, and elliptic curve discrete logarithm problems. 

Shor’s algorithm has the potential to completely break the RSA and Diffie-Hellman 
cryptosystems and their elliptic curve-based analogs, but it cannot be used to attack 
symmetric encryption or hashing algorithms. Therefore, asymmetric crypto algorithms are 
most vulnerable to compromise. 

Armed with Shor’s algorithm, an adversary or cybercriminal can take a public key and derive 
the private key to enable impersonation and fraud attacks. Therefore, we need new 
algorithms that are on different math problems for conventional computers to address a 
CRQC attack by using Shor's algorithm.

Symmetric algorithms derive security strength from the difficulty in mounting a brute force 
attack or exhaustive search exploration of all possible inputs to find the answer. For 
cryptography, this trial-and-error technique is used to guess the correct value or key. 

Examples of symmetric or hashing algorithms include AES, TDES, SHA-2, and CMAC. Brute 
force attacks on symmetric and hashing algorithms take a long time to search the message 
digest or key space to find the message digest that maps to data or correct encryption key. 
For example, when found, the correct key can be used to decrypt encrypted data. For a key 
with 256 bits, 2256 options exist to try in a worst case scenario.

A quantum computer can cut the symmetric algorithm strength in half by using Grover’s 
algorithm. Grover’s algorithm does not break all symmetric algorithms, but it can be used to 
speed up a brute force search for symmetric keys or reverse engineer a cryptographic hash. 
The risks to symmetric and hashing algorithms can be mitigated by switching algorithms or 
increasing key or hashing digest sizes because Grover’s algorithm are ineffective if the search 
space is too large. 

Grover’s quantum algorithm can affect hash-based password systems because only a few 
passwords must be searched, and the low security level of TDEA and SHA-1 means they are 
both at risk. 
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Table 1-1 lists the current security strength of specific symmetric and hash algorithms versus 
post-quantum cryptography security levels. The security level and post-quantum 
cryptography level values are a measure of the strength that is expressed in bits.

Table 1-1   Quantum computer consequences for current cryptographic algorithms14

1.4  Cryptographic vulnerabilities possible with quantum 
computers

All of today’s approved cryptographic algorithms are strongly secure against conventional 
computers, including supercomputers. For example, consider AES with a 128-bit key. On the 
average, it takes 2127 guesses to find the right key. If we assume that a conventional computer 
can try one key every microsecond, it takes about 5.4 X 1024 years to find the key, which is 
not feasible. Even the fastest supercomputers can reduce this time only slightly.

However, the problem with quantum computers is that they do not have to take this approach 
for some of today’s algorithms. In particular, the asymmetric algorithms can be broken almost 
instantaneously by using Shor's algorithm, even for the longest keys in use. 

The advent of quantum computers makes it possible to attack algorithms by using methods 
that did not exist when attackers used conventional computers. Shor’s algorithm with a 
sufficiently large quantum computer can easily break RSA or ECC algorithms. For this 
reason, new asymmetric algorithms are being developed that use different mathematical 
principles that are not subject to attack with Shor’s algorithm or any other known process on 
quantum computers.

The risk to symmetric and hashing algorithms is significantly lower. Shor's algorithm cannot 
be used against these, but another algorithm that runs on quantum computers that can 
reduce their security. 

Grover’s algorithm can be used to reduce search times, and it can be used to improve brute 
force attacks to find a cryptographic key. When searching for something in a space of N total 
items, Grover’s algorithm reduces the effort to √N. For example, a 256-bit AES key can be 
found with difficulty of only 2128. However, this key is still considered unbreakable, and NIST 
and other organizations believe that AES, SHA-2, and SHA-3 provide entirely adequate 
security in the age of quantum computers.

Security level Post-quantum levela

a. Current standards indicate that algorithm and key-size combinations that were estimated at a 
maximum security strength of less than 112 bits cannot provide conventional or quantum-safe 
cryptographic protection (see NIST Special Publication 800-57 Part 1 Revision 5).

Symmetric Hash

<= 80 <= 40 2TDEA SHA-1

112 56 3TDEA SHA-224

128 64 AES-128 SHA-256

192 96 AES-192 SHA-384

256 128 AES-256 SHA-512

14  See The Impact of Quantum Computing on Present Cryptography
Chapter 1. Cryptography in the quantum computing era 9

https://arxiv.org/pdf/1804.00200.pdf
https://arxiv.org/pdf/1804.00200.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf


Table 1-2 lists the security effect of various algorithms and protocols when a sufficiently 
strong quantum computer is available.

Table 1-2   Effect of quantum computing on cryptographic schemes14

Organizations must consider integrating quantum-safe protection into their digital 
transformation strategy and application modernization plans to mitigate these two 
vulnerabilities with current cryptography. Consider the following points:

� Public key algorithms are broken by a large-scale quantum computer by using Shor’s 
algorithm. Organizations can mitigate this vulnerability by migrating to quantum-safe 
algorithms and schemes.

� Symmetric key and hashing algorithms are affected by a large-scale quantum computer. 
Grover’s algorithm cuts in half the security strengths of symmetric and hashing algorithms. 
Organizations can mitigate this vulnerability by increasing the key or message digest 
sizes.

Secure processes rely on protocols that employ public key cryptography, including 
those protocols that are used to secure websites for banking transactions, secure email, and 
signing software. It will take 5 - 15 or more years15 to replace most public key cryptosystems 
that are used now.

Cryptographic 
algorithm

Type Purpose Quantum computer 
impact

AES-256 Symmetric key Encryption Secure

SHA-256, SHA-3 Hash algorithm Hash functions Secure

RSA Public key Signatures, key 
establishment

Broken

ECDSA, ECDH 
(Elliptical Curve 
Cryptography) 

Public key Signatures, key 
exchange

Broken

DSA (Finite Field 
Cryptography)

Public key Signatures, key 
exchange

Broken

15  Refer to Getting Ready for Post-Quantum Cryptography, then search for “5 to 15 or more years”
10 Transitioning to Quantum-Safe Cryptography on IBM Z

https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04282021.pdf


1.5  New algorithms to counter CRQC attacks

As data value grows and the required protection increases exponentially, a sense of urgency 
exists to protect long-lasting data from potential CRQC attacks. Organizations must 
safeguard data today with new cryptographic algorithms that protect against potential future 
CRQC attacks that might affect system integrity and core business infrastructures.

Researchers and standards bodies are moving to address the threat of CRQC attacks. They 
are identifying quantum-safe algorithms to protect conventional computer workloads and 
data. 

But what makes an algorithm quantum-safe? Algorithms are based on mathematical 
problems with no known quantum computer speedup. Five categories of cryptographic 
schemes are believed to be quantum-safe (see Table 1-3). Current quantum-safe algorithm 
candidates are based on these schemes. 

Table 1-3   Categories and examples of quantum-safe algorithm candidates

1.5.1  Quantum-safe algorithms

Currently, new cryptographic algorithms are being developed to safeguard against attacks 
from conventional or quantum computers. This effort is happening through a competition that 
is sponsored by NIST, where worldwide cryptographic experts submit candidate algorithms 
and analyze each other’s submissions. 

Category Description

Lattice-based crypto Crypto schemes from a field of mathematics that is called the geometry of 
numbers. The security of these schemes is based on the difficulty of solving 
mathematical problems over lattices; for example, the Shortest Vector 
Problem (SVP) and the Closest Vector Problem (CVP), such as Examples 
include IBM CRYSTALS-Kyber and CRYSTALS-Dilithium, Falcon. 

Multi-variate crypto A group of cryptosystems that is based on the difficulty of solving nonlinear 
(usually quadratic) equations over finite fields. The idea is that solving 
systems of equations in many variables is difficult under constraints 
depending on the scheme. Examples include Rainbow and GeMSS.

Code-based crypto This cryptography uses error-correcting codes to build public key 
cryptography. Examples include Classic McEliece and BIKE.

Hash-based crypto This cryptography includes digital signature schemes that are based on 
cryptographic hashes; for example, SPHINCS+.

Isogeny crypto Super singular elliptic-curve isogeny cryptography is based on the 
isogenies or mappings between two elliptic curves; for example: SIKE.

Note: Quantum-safe algorithms run on conventional computers to protect data; the new 
algorithms that can break some conventional cryptography run on quantum computers. 
That is, quantum-safe algorithms do not run on quantum computers; instead, they run on 
conventional computers.
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The algorithms are separated into the following categories: 

� Digital signature algorithms 
� Key encapsulation mechanisms and key-establishment algorithms 

NIST indicated that after careful consideration during the third round of the NIST Post 
Quantum Cryptography Standardization Process, it identified four candidate algorithms for 
standardization. The primary algorithms NIST recommends to be implemented for most use 
cases are CRYSTALS-Kyber (key-establishment) and CRYSTALS-Dilithium (digital 
signatures). In addition, the signature schemes Falcon and SPHINCS+ also are to be 
standardized. 

Algorithms to be standardized
For public-key encryption and key encapsulation mechanism (KEM), CRYSTALS-Kyber is to 
be standardized.

For digital signatures, the following algorithms are to be standardized: 

� CRYSTALS-Dilithium 
� Falcon 
� SPHINCS+ 

CRYSTALS-Kyber (key-establishment) and CRYSTALS-Dilithium (digital signatures) were 
selected for their strong security and excellent performance, and NIST expects them to work 
well in most applications. 

Falcon also is be standardized by NIST because use cases might exist for which 
CRYSTALS-Dilithium signatures are too large. Also, SPHINCS+ is to be standardized to avoid 
only relying on the security of lattices for signatures.

Also, the following candidate KEM algorithms are to advance to the fourth round: 

� BIKE 
� Classic McEliece 
� HQC 
� SIKE 

IBM Research® scientists were involved in the development of CRYSTALS-Kyber, 
CRYSTALS-Dilithium, and Falcon. They also made contributions to the development of 
SPHINCS+ and SIKE. 

IBM implemented two of the leading finalists in this competition: CRYSTALS-Dilithium for 
digital signatures and CRYSTALS-Kyber as a key encapsulation mechanism. By using these 
algorithms, you can ensure that your data is still protected in the future when large-scale 
quantum computers are available. Neither of these algorithms is subject to attack by using 
Shor’s algorithm or any other known quantum computer algorithm. 

For information about these quantum-safe algorithms, see the following web pages:

� CRYSTALS-Dilithium 
� CRYSTALS-Kyber

The security of these two algorithms is based on the difficulty of solving the 
learning-with-errors (LWE) problem over module lattices. The LWE problem involves solving a 
system of linear equations, where an error of ±1 was intentionally introduced. Because of the 
errors, the usual methods of solving a system of linear equations do not work, which makes it 
infeasible to solve for the secret value.
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For more information about the IBM Z cryptographic stack, see 4.1, “IBM Z cryptographic 
components overview” on page 48.

1.6  Quantum-safe capabilities with IBM Z

IBM z16 supports quantum-safe cryptography in the following ways:

� Infrastructure that protects the integrity of the system
� API functions that can be used by application programs

These methods are described next.

1.6.1  Quantum-safe infrastructure in IBM z16

IBM z16 adds features to protect the system from attacks, including threats that might use 
quantum computers. In particular, the system includes a secure boot feature in which it is 
protected with quantum-safe technology through the many firmware layers that are loaded 
during the boot process. Only authentic, IBM-approved firmware is accepted. 

This hardware-protected verification of the firmware uses a dual-signature scheme, which 
uses a combination of quantum-safe and classical digital signatures. The protection is 
anchored in the IBM Z Root of Trust 16.

Quantum-safe mechanisms also were added to the IBM Z cryptographic infrastructure. The 
Crypto Express Hardware Security Module (HSM) now uses a quantum-safe dual-signature 
scheme similar to the one described for the IBM Z server boot process. 

Changes were made to the TKE feature to use quantum-safe cryptography when 
authenticating Crypto Express8S (CEX8S) coprocessors, verifying replies from the CEX8S 
coprocessors, and protecting key parts in flight for the Common Cryptographic Architecture 
(CCA). Finally, the IBM Z pervasive encryption functions were updated to use quantum-safe 
mechanisms for key management.

Other IBM z16 enhancements include the following examples:

� IBM z/VM® guest support for quantum-safe APIs on virtualized Crypto Express features 
for IBM z/OS, Linux on IBM Z, and IBM VSE

� IBM RACF® quantum-safe encrypted VSAM database support, and other base 
infrastructure crypto-related enhancements

Note: IBM Crypto Express8S (CEX8S) for IBM z16 includes implementations of the  
CRYSTALS-Dilithium and CRYSTALS-Kyber algorithms; the IBM Crypto Express7S 
(CEX7S) for IBM z16 and IBM z15™ includes CRYSTALS-Dilithium support. 

16  Root of Trust is a source that can always be trusted within a cryptographic system
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1.6.2  Quantum-safe API functions available to application programs

Integrated Cryptographic Services Facility (ICSF) provides APIs. ICSF is a software element 
of z/OS. ICSF works with the hardware cryptographic features to provide secure, high-speed 
cryptographic services in the z/OS environment. ICSF provides the application programming 
interfaces by which applications request the cryptographic services. These services include 
(but are not limited to) encrypting data by using software and Crypto Express HSM or CP 
assist for cryptographic (CPACF) functions. 

ICSF offers two different cryptographic APIs for use by application programs:

� Common Cryptographic Architecture (CCA): An IBM proprietary API that includes 
general-purpose cryptographic functions and the special functions that are required by the 
payments industry.

� Enterprise PKCS#11: A standardized API that is widely used on many systems for many 
applications. 

CCA and PKCS#11 provide API functions to support quantum-safe digital signatures by using 
CRYSTALS-Dilithium, and to support key agreements by using a hybrid CRYSTALS-Kyber 
method. You can generate the public and private keys, generate and verify digital signatures, 
and negotiate a shared symmetric key by using the key agreement protocol.

Although the new algorithms are needed to provide quantum-safe asymmetric cryptography, 
the CCA and PKCS#11 APIs contain the functions you need to implement quantum-safe 
symmetric cryptography and hashing. 

You can encrypt data by using AES, with key sizes ranging 128 - 256 bits. You can use the 
SHA-2 or SHA-3 hash functions, with hash lengths up to 512 bits. In combination with the new 
digital signature and key agreement algorithms, this configuration gives a complete suite of 
quantum-safe cryptographic algorithms.

For digital signatures, one common approach today is to implement dual signatures where 
data is signed by using the older algorithms, such as Elliptic Curve, and the new 
quantum-safe algorithms. By doing so, you can meet standards that require the older 
algorithms, while also providing the higher level of protection that is offered by the 
quantum-safe algorithms. Meting those standards is easy by using CCA or Enterprise 
PKCS#11 on IBM z16 because the digital signature APIs now offer both classes of signature 
algorithms.

Finally, the Enterprise Key Management Foundations (EKMF) key management system now 
supports the management of CRYSTALS-Dilithium and CRYSTALS-Kyber keys. This support 
allows you to manage these new key types with the same tool that was available to manage 
other types of cryptographic keys.
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Chapter 2. The journey to quantum 
protection

As discussed in Chapter 1, “Cryptography in the quantum computing era” on page 1, we are 
entering a new cryptographic era. The cryptographic landscape is changing about the kinds 
of cryptographic algorithms that are implemented across the enterprise today and the ways 
they are used. For most organizations, it is a journey to quantum protection. IBM is leading 
the way, assisting businesses and organizations on this journey. 

In this chapter, we discuss some of the lessons learned as IBM embarked on the 
quantum-safe journey and the guidance that was provided by other organizations, such as 
the National Cybersecurity Center of Excellence (NCCoE), Cloud Security Alliance (CSA), 
and the European Telecommunications Standards Institute (ETSI). Standards are still 
evolving in this space and the required changes likely need significant planning and 
preparation. Every standard that uses public key cryptography will be affected.

IBM learned a great deal during the process of implementing quantum-safe technology in the 
IBM Z platform. We share some of the details of that journey and steps that can be helpful to 
your journey in this chapter, which includes the following topics:

� 2.1, “Quantum-safe cryptographic experiences” on page 16
� 2.2, “Starting the quantum protection journey” on page 21
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2.1  Quantum-safe cryptographic experiences

IBM Z began its own quantum-safe journey and with any new technology comes new 
challenges. We found it necessary to survey our system landscape and at the same time use 
knowledge and insights from our IBM Quantum and IBM Zurich Research teams. We also 
engaged the broader ecosystem, including vendors, legal, and internal organizations that are 
outside of the IBM Z team with an interest in the subject. 

The IBM Zurich Research team started several activities that were focused on developing 
practical cryptographic solutions that are resistant to the threats that are posed by quantum 
computers. With these trusted advisors, the IBM Z team has a tremendous opportunity for 
collaboration and co-creation of exceptional solutions. 

In this section, we share IBM experiences and lessons learned (see Table 2-1) in pursuing a 
quantum-safe cryptographic implementation on IBM Z.

Table 2-1   IBM experiences and lessons learned

2.1.1  Educating the team

IBM Z developers and IBM Zurich researchers have a close relationship. Researchers serve 
as trusted advisers to developers. Before beginning the quantum-safe transition journey, 
several educational briefings were held about the topic of quantum-safe cryptography and the 
effects that quantum computing has on classical cryptography. These briefings served to 
educate IBM senior management and senior technical leadership in the IBM Z organization. 

The leader’s buy-in was critical for allocating the needed resources to establish the IBM Z 
quantum-safe transition project. A leader for the project was selected, followed by the 
selection of the core team. 

The security stakeholders in the overall organization were then educated on the topic. It was 
important that the key security stakeholders be educated as their time, effort, and expertise 
also was required. 

The project goals were set forth with the intent of establishing an enterprise-wide effort and a 
strategy was needed. It was important to establish a diverse group of experts from the 
organization, including those people responsible for hardware, firmware, software, security 
architecture, and secure engineering. 

Educate the team Build a cryptographic inventory and 
create a roadmap 

Design and execute with cryptographic 
agility in mind

� Educate the security teams 
and stakeholders

� Follow standards for 
community and quantum 
computing 

� Learn about quantum-safe 
crypto options

� Research migration best 
practices

� Engage with Legal

� Build cryptographic inventory 
(reusable security asset) where 
crypto is used

� Perform a quantum risk 
assessment–gap analysis

� Evaluate vendor products 
� Develop plans for use of stronger 

cryptography 
� Understand open source effect
� Use a buttom-up approach

� Manage internal and external 
dependencies

� Make it simple to change the 
underlying crypto from one algorithm, 
method, or protocol to another

� Remember crypto algorithms are 
considered secure until broken

� Prepare for future changes
� Develop new applications as flexible 

as possible to react to new 
developments
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The core team carefully followed the National Institute of Standards and Technology (NIST) 
Post-Quantum Cryptography (PQC) standardization process and the activities of institutional 
bodies with governance over standards and regulations that are related to public key 
cryptography and IBM Z interests. 

The core team spent time learning about the new quantum-safe algorithms and the mitigation 
options for various use cases. The IBM Z team researched transition best practices. 

The team discussed options carefully with the IBM Zurich Research team to ensure that the 
proposed actions were secure. They later engaged in more detailed design sessions and 
created and evaluated proposals on a case-by-case basis. 

As the topic of quantum-safe cryptography was starting to be understood by the industry, we 
found it necessary to establish our own best practices with our research colleagues. The IBM 
Z team also worked closely with the IBM legal team and sought their guidance to ensure the 
methods and actions that were taken were in line with approved guidelines. 

Consultation with Legal is a common and important practice when embarking on the use of 
new technology as a product manufacturer. IBM Z held kickoff sessions with the technical 
leaders so they had some insight into the next steps in the process.

2.1.2  Building a cryptographic inventory

The next critical stage was to create a cryptographic inventory. During this process, the goal 
was to discover the cryptography that was in use on the platform that leads to the creation of 
a roadmap to address gaps. 

The core IBM Z team worked with IBM Zurich Research to establish a questionnaire that was 
used to capture important information. The questionnaire was tailored for the IBM Z platform, 
including several areas, such as hardware, firmware, operating systems, virtualization, 
applications, solutions, and data elements. 

Sessions were held with the component technical leaders to answer any questions they might 
have about the questionnaire, and how the questionnaire was to be completed. Each 
component leader worked with their team to complete the questionnaire and return it to the 
core team. The questionnaire covered nine key areas that were related to cryptography and 
cybersecurity in general (see Table 2-2 on page 18).
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Table 2-2   Cryptographic inventory questionnaire

Each component leader was asked to gather this information and provide for review by the 
IBM Z core team. Other information might need to be included in the questionnaire by your 
organization; however, Table 2-2 on page 18 is a good place to start.

The IBM Z core team reviewed the questionnaires and helped each component team develop 
preliminary plans for the use of stronger cryptography for symmetric crypto and hashing or 
quantum-safe crypto schemes for asymmetric crypto. IBM Z looked at areas where crypto 
was being used and looked for places where cryptographic protections might be added. 

Area Information collected

Identity � Name of component or application
� Feature or function that uses crypto
� Person responsible for component and contact Information

Symmetric crypto � Algorithm
� Function (encryption, decryption)
� Symmetric key size
� Length of time data needs to be kept secret
� Sensitivity level of the data protected (H/M/L)

Asymmetric crypto � Algorithm
� Function/protocol/method
� Asymmetric key size

Hashing � Algorithm
� Digest size

Crypto services � Crypto provider
� Crypto provider product version
� Vendor name
� How is crypto provided? (HSM, software library)
� How is the crypto implemented? (hardware, software)
� How is crypto provider version kept current?

Interoperability � Do you control the full stack?
� Do you work with a vendor or partner?
� Is the partnership internal or external to the team or 

organization?

Policies/standards/regulations � Are there policies governing the selection and use of the 
cryptography? If so, which?

� Are there standards or regulations governing use of the 
cryptography? If so, which?

� Are there associated configuration files?
� Can the component’s crypto “state” or status, configuration 

status, and so on, be queried or monitored?
� Consider cyber resilience: Are there single points of failure 

or simple denial of service (DoS) choke points?

Key management � Where do the keys come from?
� Where are the keys stored?
� Is a key management system or key server used?
� Is a key transport protocol used?
� Are the derived or created keys used to wrap or protect other 

keys?

Preliminary assessment Has a gap been identified? (Crypto being used must be updated, 
mitigation plan is needed?)
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This iterative process led to fruitful discussions. Design review sessions were held, and 
research provided guidance and feedback about the plans and strategies that were 
developed. Because the cryptographic inventory is a living document, the inventory 
documentation must be updated as changes are made.

2.1.3  Creating a roadmap

After the IBM Z core team understood the affected areas, it was necessary to prioritize the 
changes. We developed a multi-phase roadmap with the goal to update protections of the 
most important areas first. 

The IBM Z team also considered areas where the changes were simpler to make. Some 
items needed to be implemented day one and some items were to be updated over time. 
Several factors influenced the decisions about where items land on the roadmap. 

Evaluating dependencies was critical. The uncertainties, costs, and the value of the option to 
the system also needed to be considered. The core team had dependencies inside and 
outside IBM Z, which affected prioritization of changes. 

Some of the dependencies included the following examples:

� NIST PQC Standardization Process algorithm recommendations

� Other standards and guidelines not yet updated; for example, IETF community, including: 

– TLS/SSL/SSH standards
– PKI standards for certificates
– network security
– communication protocols

� Availability of quantum-safe hardware products from vendors

� Dependencies on IBM software and hardware solutions

� Availability of crypto libraries and hardware that supports the quantum-safe algorithms

The IBM Z approach was to protect the system infrastructure (such as core boot paths and 
related firmware components) and key security components, such as the Crypto Express 
hardware security module (HSM) and Trusted Key Entry (TKE). At the same time, customers 
had to be provided with the capabilities to begin the use of and experimenting with the 
quantum-safe technology. The IBM Z team considered areas where we controlled the entire 
stack and dependencies were internal to our system. Implementation complexity might be a 
function of technology or unresolved dependencies. 

After prioritizing the work based on the risks and dependencies, a multi-phase roadmap was 
created. Flexibility was maintained in the roadmap as discoveries during the plan execution 
phase were expected. 
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2.1.4  Designing and running with cryptographic agility in mind

The key to the designs was the need to include cryptographic agility. This became evident 
because of some uncertainties that were identified early in the process and the necessity to 
create designs that lend themselves to change with new crypto algorithms in the future.

During the execution phase, the IBM Z team used the following options that were based on 
the identified use cases:

� Updated encryption by migrating to AES encryption by using 256-bit keys

� Updated hashing algorithms to support SHA-256 or higher

� Implemented dual digital signing schemes by using classical and quantum-safe algorithms

� Implemented hybrid key exchange mechanisms by using classical and quantum-safe 
algorithms

At this stage of the quantum-safe journey, these options were the most reasonable for the use 
cases. 

The IBM Z team identified all of the operating environments where algorithm support and 
secured quantum-safe libraries were needed. Vendors were contacted to understand their 
quantum-safe roadmaps and plans. Based on feedback from these vendors, the IBM Z 
roadmap was revised. 

Discussions with the IBM Zurich Research team, the IBM Quantum team, the IBM Security® 
team, and IBM Legal team continue as changes were implemented and next steps were 
documented.

IBM Z designs were created with agility in mind to be prepared for the transition when new 
standards guidance is provided and to support inevitable future changes to cryptographic 
algorithm requirements. The purpose also was to lay a foundation for which IBM Z can make 
the other areas of the system quantum-safe over time. 

2.1.5  Quantum-safe journey in review

This high-level overview of the journey that was taken by IBM Z can be used to help start your 
quantum-safe journey. The IBM Z journey and the recommendations of other experts in the IT 
industry included the following takeaways:

� Obtain senior level management buy-in

� Educate your organization on quantum risks and quantum-safe cryptography

� Create a quantum-safe crypto core team

� Inventory current crypto in use

� Control access to the inventory

� Identify areas that are most vulnerable

� Research cryptographic agility and quantum-safe cryptographic algorithms to determine 
which algorithms suit your use cases

� Identify crypto API providers and crypto hardware to accelerate performance

� Develop implementation validation and testing tools

� Identify all communications protocols with quantum-vulnerable crypto algorithms

� Identify automated crypto discovery tools

� Update the processes and procedures of developers, implementers, and users
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� Develop a risk-based approach, considering security requirements, business operations, 
and mission impact

� Identify a transition timeline and resources

� Prepare to follow strategies to protect digital assets and systems

2.2  Starting the quantum protection journey 

Several stages must be taken along the journey. Each organization has different cryptography 
use cases and usage constraints. It is important that the collateral that is created by each 
team be reviewed to provide the best options and plans for your situation. 

Although no one-size-fits-all solution exists, general steps and guidance can be beneficial. 
Consider your cryptographic use in three broad areas:

– Infrastructure
– Applications
– Data protection

2.2.1  Following industry guidance

Several organizations formed task forces or working groups to discuss quantum-safe 
cryptography and offer their guidance. We recommend that you review the work being done 
by these groups. Experts in the field provide insights that can prove to be useful in your 
situation. 

National Cyber Security Center of Excellence (NCCoE)
NCCoE formed a Post-quantum cryptography (PQC) project. The project goal is the 
development of practices in the form of white papers, playbooks, and demonstrable 
implementations for organizations to ease the transition from the current set of public key 
cryptographic algorithms to replacement algorithms that are resistant to quantum 
computer-based attacks. 

For more information, see this NCCoE web page.

Electronic Telecommunications Standards Institute (ETSI)
The ETSI Cyber Quantum Safe Cryptography (QSC) Working Group aims to assess and 
make recommendations for quantum-safe cryptographic primitives, protocols, and 
implementation considerations. These considerations are based on the state of academic 
cryptography research and quantum algorithm research, and industrial requirements for 
real-world deployment. 

For more information, see this ETSI web page.

Cloud Security Alliance (CSA)
CSA formed a quantum-safe security working group. The goal of this working group is to 
support the quantum-safe cryptography community in the development and deployment of a 
framework to protect data that is in movement or at rest. 

For more information, see this CSA web page.
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French National Cybersecurity Agency (ANSSI)
ANSSI is committed to ensuring that public administrations, public services, and businesses 
can take full advantage of a secure and trustworthy digitalization. The goal is to provide 
direction to industrials developing security products and outlining the transition agenda for 
quantum-safe cryptography. 

For more information, see this ANSSI web page.

2.2.2  Start now

The threat that quantum computers pose to our current cryptographic systems is well 
known. Even though large-scale quantum computers are not yet here, it is critical to take 
action well before their arrival. Organizations need to be planning now, for the upcoming 
transition to new quantum-resistant cryptographic algorithms. Failure to do so may mean 
that your information will not be protected from these future attacks.

- Dustin Moody, Mathematician, Post-Quantum Cryptography Project Leader, National Institute 
of Standards and Technology (NIST)

For the last several years, experts were urging organization to begin planning for the 
replacement of hardware, software, and services that use the cryptography that is likely 
subject to attack by a quantum computer. 

Based on history, it can take a long time to make changes in all the places where change is 
required. The initial inventory phases can show surprising findings. This part of the process is 
often referred to as crypto discovery. Not only do you find crypto that must be migrated, but 
you might also find areas where cryptographic protections are not in place or that 
cryptography is not correctly implemented and not suitable for the intended purpose. 

You might discover that specific source code is no longer available or build tools are no longer 
available, which makes change difficult and time-consuming. It is advantageous to find 
automated tools that help with the inventory process. 

The authors of code modules might be unknown or no longer work for the company. The new 
algorithms are not drop-in replacements. Key sizes, signature sizes, performance, and so on 
must be considered. 

Any number of your IT professional staff might need to get involved in your quantum-safe 
journey (see Table 2-3 on page 23 for examples).
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Table 2-3   Involvement of IT professionals for the quantum-safe cryptography journey

Another important reason to start the quantum-safe journey now is because you do not want 
to keep creating assets that are susceptible to quantum attacks. Use protection methods 
today so that today’s data is protected in the future. New technology takes time to develop, 
test, and deploy. To avoid costly mistakes and to ensure you have the technology to address 
your use cases, organizations must start now. 

2.2.3  Building your inventory

Consider creating a data inventory and cryptographic inventory:

� The data inventory must contain information about your critical data assets. It is a 
comprehensive catalog of the data assets in the enterprise. 

Document important information about the data protection requirements and how long that 
protection must be in place. Also, record any standards or regulations that govern the 
protection of the data.

� The cryptographic inventory must contain information about where and how cryptographic 
algorithms are used.

The cryptographic inventory provides you with the information you need to create your 
roadmap and plan. In specific cases, tools do not exist that automate the process of 
inventorying the crypto in use. 

Using a questionnaire
A questionnaire can be a useful tool for gathering the information from the key stakeholders. 
The questionnaire helps stakeholders understand for what they need to look. The 
questionnaire can be used with the tools that are available to compile the baseline inventory. 
IBM Z provides tools that can help with crypto discovery. For more information, see 
“Establishing a cryptographic inventory” on page 58.

Stakeholder Roles

IT security � Chief information security officer
� Chief security architect
� Key management personnel
� IT security personnel
� Mainframe security administrator
� Enterprise security Architect

Networking � Network administrator
� Network architect

Auditors � Security auditor
� Financial regulation office
� Compliance officer/auditor

Applications � Application architect
� Application programmer
� Application owner

Management 
systems 

� System administrator
� Hardware administrator
� Storage administrator

External parties � Customers
� ISV representative
� Business partners
Chapter 2. The journey to quantum protection 23



Maintaining and securing the inventory
Maintaining and securing the inventory is critical. Make sure you treat the inventory as the 
security-sensitive artifact that it is. Access to the contents must be controlled. Component 
owners can access their information but not the information of other components unless a 
need to know exists and collaboration among teams is needed.

Performing a gap analysis
By using the inventory, you can perform a gap analysis that leads to the creation of your 
roadmap. More than likely, you discover that you cannot change every area that is identified in 
your inventory. Therefore, you must prioritize. 

Protect the most critical assets first and make changes so that you do not continue to use 
vulnerable cryptography where possible. 

Determining dependencies
Dependencies can determine the location and timing of changes on your roadmap. You must 
have a mitigation strategy in place. This strategy includes knowing the mitigation options that 
are available to you and when to use those mitigations. 

It is critical that your strategy include extensive testing. Solutions must be prototyped to 
understand usability and performance effects. Some of the mitigations involve the use of 
longer keys and artifacts, which requires more space and resources. It is critical that you 
review your threat models with your secure engineering team to ensure you did not 
inadvertently introduced a vulnerability. 

2.2.4  Knowing your options

After you understand where crypto is being used, it is critical to know your mitigation options. 
A transition strategy is needed that is based on industry guidance and the use cases that your 
organization must address. It is important to perform a risk assessment to inform your 
decisions about your transition roadmap. 

The primary options include the following examples:

� Strengthening symmetric and hashing algorithms by increasing key sizes for strong 
algorithms, such as AES, to at least 256 bits and hashing digest sizes to at least SHA-256, 
depending on your use case.

� Implement dual signing. A dual signature consists of at least two signatures on a common 
message. According to guidance provided by NIST, one signature is generated with a 
NIST-approved signature scheme as specified in FIPS 196, while the other signatures can 
be generated by using a different signature algorithm. 

For quantum-safe, the second signature is a quantum-safe signature 
(CRYSTALS-Dilithium is used for IBM z16). The signatures must be parsed and verified 
separately; if either fails, the signature for the object fails.

� Implement hybrid key establishment schemes. This scheme is a combination of two or 
more components in which cryptographic key-establishment schemes are used. 

According to guidance from NIST, the scheme is considered secure if at least one of the 
schemes remains secure. Therefore, one of the components of the hybrid scheme must 
be NIST-approved; for example, a discrete-logarithm based scheme from NIST SP 
800-56A or an integer-factorization scheme from SP 800-56B, and the other component is 
a post-quantum cryptography scheme. 
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NIST SP 800-56C describes a hybrid key establishment construction. The specification 
describes a process that allows a key derivation method permitting a shared secret1 “Z” to 
be concatenated with a value protected by a quantum-safe key encapsulation mechanism 
(KEM). 

Each specific use case must be evaluated to determine whether the implementation costs, 
performance reduction, and solution complexity can be contained. The hybrid and dual 
schemes require a security review to ensure that the security-related implementation errors 
were not introduced.

For more information about common cryptography use cases with challenges a 
cryptographically relevant quantum computer (CRQC) can present and the quantum-safe 
solutions that are provided by IBM Z, see Chapter 3, “Using quantum-safe cryptography” on 
page 27.

2.2.5  Incorporate cryptographic agility

It has probably become clear that piece by piece, enterprises must change the underlying 
cryptography that they use. However, this instance is not the last time such a change is 
required. This necessary change is an opportunity to rethink how applications use complex 
cryptography such that future changes, updates, and patches are much simpler to apply. 

Cryptographic agility is the key for cybersecurity. 

When we think of cryptographic agility, we must broaden our view of its scope beyond 
cryptographic migration such that we focus on only swapping from one crypto algorithm or 
standard to another because of the complexity of the problem. We must think about how we 
transition to architectures that offer agility for ongoing cryptographic migrations over time. 

We know that cryptographic algorithms break or become obsolete. IBM Think® of the 
dimensions of cryptographic agility as areas where we can focus on agility. The topic of agility 
is relevant throughout the lifecycle of crypto from its definition and introduction into standards 
through its retirement as being obsolete or no longer secure. 

The early phases of a cryptographic algorithm's lifecycle are handled by experts in the field in 
academia and industry. Table 2-4 lists the cryptographic agilities that are most important to 
our discussion.

Table 2-4   Cryptographic agilities

1  Known only to the entities involved in a communication. Possession of that shared secret can be provided as proof 
of identity for authentication.

Agility Definition

Algorithm Ability to select algorithms in real time based on their combined security 
functions or organizational policy

Protocol Ability to move to new versions of a protocol, such as 1.1 to 1.2 to 1.3, for 
TLS

Implementation Ability to add crypto features or algorithms to hardware or software, which 
results in new, stronger security features

Platform Ability to adapt to platform-specific constraints or support for cryptographic 
operations

Retirement Ability to retire crypto systems that became vulnerable or obsolete
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Cryptographic agility is an active area of research. Guidance that we see coming out of 
research areas already recommends no longer hardcoding crypto specifics in applications. 
Instead, the use of a higher-level abstraction layer allows for passing in those specifics so that 
they can be changed when needed without changing the application when possible.

From a broader standpoint, cryptographic agility is about an information security system’s 
ability to rapidly switch to alternative cryptographic primitives and algorithms without making 
significant changes to the system’s infrastructure.

When considering your cryptographic strategy in light of quantum-safe transition, spend some 
time studying this topic and explore how to best improve your cryptographic agility.

For more information and an example, see “Considering cryptographic agility” on page 61.
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Chapter 3. Using quantum-safe 
cryptography

In this chapter, various use cases are introduced to illustrate the threats that many 
organizations face with the rise of quantum computing for use cases that are related to 
confidentiality, integrity, authentication, and nonrepudiation. 

Across these use cases, the challenges are addressed and how the quantum-safe 
capabilities that are provided with IBM z16 can help to overcome these challenges and 
ensure the security of sensitive and valuable data into the future. 

Also, each use case includes applications for quantum-safe encryption capabilities across 
different industries and the specific enhancements with IBM z16 that enable these adoption 
patterns. 

This chapter includes the following topics: 

� 3.1, “Protecting sensitive data” on page 28 
� 3.2, “Use case: Sharing keys securely” on page 31 
� 3.3, “Use case: Message integrity and secure logging” on page 37 
� 3.4, “Proof of authorship” on page 42 
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3.1  Protecting sensitive data 

Classical cryptographic algorithms are widely used to protect data that is at rest and in flight. 
Cryptographic algorithms are used for having the capabilities of secrecy, integrity, 
authentication, and nonrepudiation. 

Organizations use symmetric keys and public key encryption for data protection schemes. 
Most organizations encrypt sensitive data to protect it against insider threats, unauthorized 
user access, and accidental data exposures. 

An organization’s data is at risk on the internet and communication network when Shor’s 
quantum algorithms are used to break public key encryption schemes. Suppose that a 
cybercriminal gets access to a powerful quantum computer, they can decrypt lost or 
harvested confidential data by determining encryption keys.

In highly regulated industries, organizations must protect subject data rights to personally 
identifiable information (PII) or personal health information (PHI) and comply with standards, 
such as GDPR, NIST, ISO, SOX, CCPA, and PCI. Data privacy and security are critical to 
avoid penalties and the cost of data breaches because digital trust and brand reputation are 
at stake. Organizations need quantum-safe encryption to protect their sensitive data and 
maintain the confidentiality of trade secrets in the quantum era.

3.1.1  Problem statement

An organization’s long-lasting data can be at risk from “harvest now, decrypt later” attacks. 
These attacks are carried out offline or as passive attacks on confidentiality versus as an 
online attack against a security protocol. That is, an adversary might carry out the attack by 
collecting data or public information today and later attempt to recover the secret key that is 
used to encrypt the data. This process might be done by mounting a brute force attack to find 
the secret key. The the private key that is used in a key negotiation step also might be derived 
by attacking Rivest, Shamir, Adleman (RSA) or Elliptic Curve Cryptography (ECC) if a public 
key protocol was used for secret key establishment. The bad actor’s goal is to find the secret 
key that was used to encrypt the data. 

Organizations must start the use of quantum-safe methods to protect their data now so that 
more vulnerable data is not produced. Several symmetric algorithms are not secure when 
Grover’s algorithm is used to search the key space. 

Organizations can mitigate the risk by switching to strong encryption algorithms, such as 
AES, and ensuring the AES key length is at least 256 bits. As discussed in “Cryptographic 
vulnerabilities possible with quantum computers” on page 9, organizations should not 
continue to encrypt their sensitive data by using algorithms, such as 2TDEA or 3TDEA, 
whose strength is not sufficient in the quantum computing era. These algorithms for new 
encryption use cases must be retired or no longer used when possible. 

3.1.2  Solving this challenge by using IBM z16 capabilities

Organizations must be concerned about data protection today. Even though the threat of a 
quantum computer might be in the future, organizations must ensure that they are not 
continuing to create encrypted data by using methods that are not quantum-safe, especially 
for long-lasting data. 
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It is essential to understand data classification and where potential exposures exist. It is also 
critically important to have a plan for retiring versions of your data that were protected by 
using the retired algorithms. If that data remains in systems, an attacker might find it and 
break it without attacking the version that is newly protected with the newer algorithm. 

In 2.2.3, “Building your inventory” on page 23, we discussed creating a data inventory and a 
cryptographic inventory. These security assets help organizations identify which data is 
encrypted and which encryption methods were used. 

The inventories must be reviewed to highlight weak or vulnerable encryption cryptography 
that is used in the enterprise to protect data. IBM provides tools to help create the 
cryptographic inventory, such as ADDI, CAT, zERT, and the Crypto Statistics Monitoring tool, 
as described in “Establishing a cryptographic inventory” on page 58. 

After the vulnerable data assets are identified, a data protection strategy is created. The 
strategy is informed by using knowledge about how the data must be protected. 

IBM z16 offers several features that can be used to protect the data, such as pervasive 
encryption. This encryption feature uses AES encryption with 256 bits. Its internal key 
management support uses quantum-safe protections with a hybrid key exchange mechanism 
that uses CRYSTALS-Kyber and Elliptic Curve Diffie Hellman (ECDH) and dual-signing 
scheme that uses CRYSTALS-Dilithium and Elliptic Curve Digital Signature Algorithm 
(ECDSA). The pervasive encryption features include Linux on IBM Z protected key dm-crypt, 
z/OS data set encryption, coupling facility encryption, and IBM z/VM encryption.

IBM z16 also provides quantum-safe APIs that can be used to protect data. The APIs are 
available through ICSF. IBM z16 provides quantum-safe key management APIs and lifecycle 
management support for the organization to generate the encryption keys and also 
encryption APIs that can be used to encrypt the data (see Figure 3-1). 

Figure 3-1   Data encryption process
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The following process is used to encrypt data on the IBM z16 as shown in Figure 3-1 on 
page 29:

1. The Requester calls ICSF to generate an AES 256-bit CIPHER key. The Requester is a 
component that uses the quantum-safe APIs, such as an application or key management 
tool.

2. ICSF sends a request to Crypto Express8S (CEX8S) to generate a secure key.

3. CEX8S returns the secure key to ICSF.

4. ICSF returns the key to the Requester.

5. The Requester calls ICSF to add a key record to the CKDS that contains the key, which 
later is referenced by its associated key label.

6. The Requester calls ICSF to encrypt data by using the key label.

7. ICSF retrieves CIPHER key from the key data set. If requested, the secure key is 
converted to a protected key. A secure key request, including the key and data, are sent to 
the CEX8S. Protected key requests (including the key and data) are sent to CPACF.

8. The crypto engine (CPACF or CEX8S) returns the ciphertext to ICSF. 

9. ICSF returns ciphertext to the Requester.

3.1.3  Industry applications

In highly regulated industries, organizations must provide data security and protection to 
meet the privacy regulations and compliance requirements that are outlined in their data 
retention policies. Examples are healthcare and insurance organizations with patient health 
information (PHI) in electronic medical records (EMR) that must be protected. These and 
other organizations must encrypt and store confidential documents for a long period.

Information that requires special attention includes tax documents, legal agreements, trade 
secrets, and clinical trials. Customer data and PII must be protected. Financial and banking 
organizations must protect customer data in mortgage and loan processing applications. 
They must also safeguard banking (PAN data) or payment card (IBM PIN® data). 
Organizations must ensure that their data is being protected by using quantum-safe 
encryption methods.
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3.2  Use case: Sharing keys securely

This use case describes the requirement for organizations with confidential information, such 
as intellectual property, to share their sensitive data with Business Partners and third parties 
by establishing keys with traditional key exchange protocols. 

In addition, the threat that quantum computing has on these processes are explained in-depth 
and how IBM z16 capabilities can overcome these challenges. The quantum-safe capabilities 
in the IBM z16 can help ensure that partnering organizations securely share their intellectual 
property and proprietary information to avoid information disclosure and protect it from 
competitors to avoid reputation damage, profit loss, and brand impact. 

Across many industries, organizations use their valuable information, sensitive data, and 
intellectual property to compete and succeed in a global market. These digital assets 
oftentimes constitute over 80% of the organization’s total value. 

Organizations that have strategic relationships with each other, such as Business Partners, 
often need to share this valuable information to collaborate and develop solutions and 
products. As important as it is to enable this collaboration and allow for sharing of information, 
it is equally important that this valuable information stays out of the hands of competitors and 
adversaries. The unintended disclosure of an organization’s intellectual property and 
sensitive information can result in irreversible damage to the organization’s reputation, along 
with profit loss and long-lasting brand impact. 

Traditionally, organizations keep their sensitive information and digital assets protected by 
encrypting their data within their data boundaries. The ability to share these encrypted assets 
with partners implicates a need to securely share keys with their partners so that they can 
also access the data. This process is referred to as a key exchange and often used a key 
agreement protocol. The details of a hybrid key agreement scheme are described in this 
section.

3.2.1  Problem statement

In the past, this key exchange process was used by partnering organizations in a way that 
allowed them to securely derive the same encryption key over a public, insecure channel. 
Regardless of who was eavesdropping on the public channel (whether a competing 
organization or a bad actor), the mutually derived encryption key maintained its confidentiality 
because of the ability to establish a secure connection over this public, insecure channel by 
way of key exchange schemes. 

Traditionally, the ECDH key agreement protocol is a method that is used to derive keys for a 
key exchange process. This key agreement scheme allows two business parties, each with 
their own ECC key pair (consisting of a private and public key) to establish a shared secret by 
using an insecure channel, and it begins with each party sharing their public keys. 

However, a key agreement scheme solves one piece of the key exchange puzzle. To create a 
truly secure key exchange protocol, you must also solve the “trust” problem that is associated 
with exchanging keys. 

Although the public key can be shared over an insecure channel, a mechanism must be in 
place to ensure that the key that is labeled as party A’s public key really belongs to party A 
and the key labeled party B’s public key really belongs to party B to avoid a man-in-the-middle 
attack. 
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This problem can be addressed by cryptography; however, this use case focuses on the key 
establishment piece of the key exchange puzzle. For our example, we assume that a trust 
mechanism is in place. 

If party A and party B wanted to participate in a key exchange process to obtain a shared key, 
they each generate their ECC public-private key pair and share their public keys with each 
other. Each party can use the ECDH protocol to derive the same shared key. 

For example, party A uses their private key in combination with party B’s public key in the 
protocol, while party B uses their private key in combination with party A’s public key. The 
result is that both parties now have the same shared secret. This method of key exchange to 
derive the same shared secret historically was considered secure because neither party had 
to share their private key to perform the key exchange.

Traditionally, this use of public key cryptography for key exchange was considered sufficiently 
secure. The only means for a cybercriminal to derive the shared secret key was to obtain one 
of the party’s private keys. 

Although the public and private keys in an ECC key pair are mathematically related, it takes a 
conventional computer millions of years to derive the private key from one party’s public key 
because of the significant computational capacity that is required to perform this operation. 
However, the rise of quantum computing brings about many challenges to keeping the shared 
secret key secure. 

Although specific symmetric key algorithms, such as AES with 256-bit encryption keys, are 
considered quantum-safe, the method of sharing those keys in a key exchange by way of 
public key cryptography is no longer considered to be quantum-safe, which results in the 
vulnerability of these symmetric keys. 

After quantum computers have the computing power to perform Shor’s Algorithm, an 
adversary with access to a quantum computer can solve the elliptic curve discrete logarithm 
problem exponentially faster than a conventional computer. As a result, the private key of one 
party can be derived from their public key in only a matter of hours. 

After the key is in the hands of an adversary, the same shared key that is derived by the two 
parties might be generated with the ECDH key exchange scheme. Then, the bad actor can 
access the organization’s valuable information. 

To make matters worse, data that is encrypted today by using symmetric keys that are 
exchanged between two parties by way of public key cryptography is still not safe, even in the 
absence of quantum computers of sufficient scale. 

Because the encrypted data, along with the public key, can be harvested today, an adversary 
with access to a quantum computer in the future can perform Shor’s algorithm to break this 
public key cryptographic algorithm to expose the sensitive data. 

3.2.2  Solving this challenge with IBM z16 capabilities 

Valuable information and digital assets that partnering organizations share with each other 
are no longer secure because of methods that are used by adversaries to harvest the 
encrypted data now. 

IBM z16 provides quantum-safe capabilities to circumvent this security challenge and allow 
for the secure key exchange between two parties in a quantum-safe manner. With IBM z16, 
organizations have a reliable method to securely share encryption keys between parties 
through a hybrid key exchange scheme. 
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Although traditional key exchange schemes relied on public key cryptography alone to derive 
a shared secret, a hybrid key exchange scheme relies on classical cryptography (such as 
ECDH) and a quantum-safe cryptographic algorithm (such as CRYSTALS-Kyber). ECDH is a 
key agreement protocol and CRYSTALS-Kyber is a key encapsulation mechanism.

When used together, organizations have an efficient way to securely exchange keys, even in 
the face of high-powered quantum computers. This secure exchange is made possible with 
the introduction of quantum-safe APIs within the Crypto Express8S feature (CEX8S). This 
feature is provided with IBM z16 to securely derive quantum-safe encryption keys by using 
the hybrid key exchange mechanism that is performed in the CEX8S by using the CCA API or 
the Enterprise PKCS#11 API.

When two Business Partners (party A and party B) take advantage of this hybrid key 
exchange scheme on IBM z16, they can safely derive keys that are used to protect their 
shared sensitive information (see Figure 3-2). 

Figure 3-2   Key and data setup for hybrid key exchange - CCA example

By using this capability, party A generates an ECC key pair and a quantum-safe 
CRYSTALS-Kyber key pair. Party B must generate an ECC key pair and an AES CIPHER key. 
The two parties then exchange their public keys. 
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Party B then uses CEX8S APIs to generate a random 32-byte secret and encrypt it with party 
A’s CRYSTAL-Kyber public key and an AES key that is owned by Party B. The secret that is 
protected with the CRYSTAL-Kyber public key is transmitted to party A. Although it is being 
sent over an insecure channel, not even a quantum computer can break this algorithm 
because it is considered to be quantum-safe (see “New algorithms to counter CRQC attacks” 
on page 11). 

After party A receives the wrapped secret, they then use their CRYSTALS-Kyber private key 
to recover the 32-byte secret from party B. Now that both parties have each other’s ECC 
public key and the 32-byte secret, they can each use the ECDH key agreement protocol to 
create a shared secret just as they do in the classical key exchange process (see 
“Quantum-safe hybrid key exchange” on page 113). 

However, this shared secret is used with the mutually known 32-byte secret in the key 
material creation process to compute the same shared key by using ECDH. This 32-byte 
secret is protected with the quantum-safe Kyber algorithm. By using the CEX8S APIs, the 
secret information is protected by the hardware security module and never appears outside in 
the clear in the memory of the host computer.

After this shared secret key is derived by both parties, it can be used to encrypt either party’s 
data, and the data itself can be shared between parties (see Figure 3-3). Even in the 
presence of a quantum computer with sufficient computing power, the key cannot be derived. 
Although a quantum computer might derive either party’s ECC private key, the 32-byte secret 
that is used in the ECDH protocol cannot be exposed because it was protected by using a 
CRYSTALS-Kyber key.

Figure 3-3   Hybrid key agreement process - CCA example
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3.2.3  Industry applications

This section describes how organizations across many different industries with a need to 
share encryption keys securely with partners by using traditional key exchange mechanisms 
might be vulnerable to CRQC attacks. 

It also outlines how they can benefit from the hybrid key exchange schemes that are provided 
with IBM z16 to ensure data confidentiality, even in the presence of sufficiently capable 
quantum computers.

Pharmaceuticals
The pharmaceutical industry is an example of the need to securely share intellectual property 
and research findings with Business Partners to drive success. The process of developing 
new drugs and making them publicly available in the marketplace is lengthy and costly. 

On average, it takes at least 10 years for a new drug to become available in the market, with 
six to seven of those years being dedicated to performing clinical trials. A study that was 
conducted by Tufts Center for the Study of Drug Development1 estimated that it costs 
pharmaceutical companies $2.6 billion to develop a new medication gaining marketing 
approval. 

Pharmaceutical companies that are vying to successfully complete clinical trials for their new 
drug have only a 12% success rate. Even if a newly developed drug passes all required steps 
to bring it to market, pharmaceutical companies face heavy competition with each other.

To create efficiencies in the drug development process to lower costs and increase the 
likelihood that a drug passes clinical trials, pharmaceutical companies can benefit greatly 
from collaborating with each other and other technology organizations. An example of this 
collaboration within the pharmaceutical industry was the agreement between Pfizer and 
BioNTech to begin developing a vaccine for COVID-19. One year later, the BioNTech, Pfizer 
vaccine was approved for use worldwide.

Part of this collaboration requires the need to safely share intellectual property and research 
findings with each other. Their data must be protected from unintended disclosure by 
competitors and adversaries to avoid reputation damage, profit loss, and brand impact. 

Although the rise of quantum computing undoubtedly benefits pharmaceutical companies 
regarding drug development, it also brings about challenges for them about collaborating with 
each other and sharing their intellectual property in a secure manner. 

If an adversary with access to a quantum computer can break the encryption algorithms that 
are used to protect shared information, they can publicly expose a pharmaceutical company’s 
research findings that can result in a significant advantage for their competitors to release a 
similar drug. 

By taking advantage of the quantum-safe capabilities with IBM z16, these organizations can 
use the benefits that quantum computers can provide in Research and Development while 
also ensuring that intellectual property that is shared between companies remains secure.

1  See: Protecting Intellectual Property Rights in the Pharmaceutical Industry
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Government bodies
Government bodies often partner with other government agencies and the private sector to 
create efficiencies in their operations. For example, information sharing programs are used 
that are dedicated to saving government resources through partnerships between various 
federal, state, and municipal government agencies. As part of these information sharing 
programs, the previously mentioned agencies are entitled to exchange taxpayer information 
with each other. 

This example the need to facilitate the sharing of confidential information between partnering 
agencies. Although safeguards exist to protect the confidentiality of taxpayers’ information, 
the threat of quantum computing presents challenges for maintaining this confidentiality in the 
future. 

Government bodies greatly benefit from the capabilities that are provided with IBM z16 to 
enable secure information sharing with partners. By using quantum-safe hybrid key exchange 
schemes, government agencies can maintain the confidentiality of their citizens’ information 
as it is shared to ensure that not even a quantum computer can intercept the information and 
break the encryption algorithms that are used to protect it. 

Banking
In financial services, such as banking, a significant need exists to protect business-critical 
data in the face of quantum computing. Although many examples exist of data that requires 
protection in banking, a simple example to illustrate is in the case of credit card information. 

Banks are required to comply with the Payment Card Industry Data Security Standard (PCI 
DSS) for protection of customer’s sensitive payment card information. As a result, security 
protocols are in place to protect their sensitive data as it is transmitted between point-of-sale 
(POS) terminals and the bank. This process typically is done by encrypting the data that is in 
transit between the two parties.

PCI DSS implies is that both parties must have a shared symmetric key that is used to 
encrypt the customer data at the POS and then decrypt it when in the hands of the bank. 
Even when quantum-safe symmetric key algorithms are used, such as AES (assuming 
256-bit keys) for this encryption and decryption, the problem is that the shared keys are 
typically exchanged through classical public key cryptography schemes alone that are not 
quantum-safe. For example, they might use ECDH as their key agreement protocol to derive 
their symmetric encryption key. 

As a result, the protection of their customers’ sensitive payment card information can 
potentially be exposed if a cybercriminal harvests the encrypted data now to decrypt in the 
future after they obtain access to a quantum computer of sufficient scale. 

Therefore, banks and other organizations that deal with sensitive payment card information 
can benefit greatly by using the hybrid key exchange schemes that are available with IBM 
z16. By doing so, they securely derive a shared encryption key that cannot be derived in the 
face of high-powered quantum computers.

Automotive and aerospace
Similar to the pharmaceutical industry, automotive and aerospace companies must protect 
their intellectual property from unintended information disclosure from their competitors to 
avoid reputation damage, profit loss, and brand impact. They also must collaborate with 
Business Partners to develop the latest cutting-edge capabilities in their respective industries. 
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To enable this collaboration, they must share their intellectual property and proprietary 
research findings with each other in a way that is secure and cannot be exposed to bad actors 
and competitors. This sharing also is done by way of encrypting confidential data in transit by 
using mutually derived encryption keys. 

Because these keys are shared between partnering organizations by using traditional public 
key cryptography alone, it can be concluded that quantum computers eventually can expose 
the organizations’ confidential information that is shared between parties by breaking the 
traditional public key algorithms that are used today. 

Therefore, the quantum-safe key exchange mechanisms that are available with IBM z16 can 
be used. As a result, automotive and aerospace companies can be assured that the 
intellectual property they are exchanging with partners is never exposed in the clear to avoid 
unintended information disclosure.

3.3  Use case: Message integrity and secure logging

This use case addresses the problem of ensuring the integrity of messages and logs in the 
presence of quantum computers and how capabilities that are provided with IBM z16 can 
solve these challenges.

Organizations that send messages and digital assets to other parties, such as legal 
documents, audit logs, financial statements, and historical records, traditionally ensured the 
integrity of their messages by using digital signatures. 

By using digital signatures, organizations can ensure that the receiver of a message or 
document knows whether the message is genuine and untampered. This feature makes it 
possible to prevent legal and documentation fraud. 

However, with the rise of quantum computing, adversaries with access to a quantum 
computer of sufficient scale can undetectably rewrite history and modify documents, 
messages, and logs, and claim that the tampered message was indeed the original message 
the organization sent. 

This section addresses how IBM z16 capabilities can overcome this security challenge.

Although digital signatures can serve multiple purposes, the focus of this use case is on 
message integrity. Digital signatures can also help achieve identity authentication, or proof of 
authorship, as described in 3.4, “Proof of authorship” on page 42.

3.3.1  Problem statement

In the past, organizations relied on digital signatures to ensure the integrity of messages, 
digital documents, and logs used for auditing purposes. Traditionally, when an organization 
sent a digitally signed message or document to another party, the other party verified the 
digital signature to ensure that the document or message was genuine and was not modified 
by an adversary. By using digital signatures, organizations avoided advanced legal and 
documentation fraud. 

Digital signatures rely on public key cryptography. ECDSA is one example of a popular 
cryptographic algorithm that is used for digital signatures. 
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For an organization to send a message or document to another party and ensure it was not 
tampered with in-transit, they digitally sign the document by using ECDSA, for example. The 
process begins with the organization generating an ECC key pair (consisting of a private and 
public key). They then use the ECDSA signing algorithm to generate a digital signature. 

As part of the algorithm’s signing process, a cryptographic hash of the message, document, 
or log is first calculated by using a hash algorithm, such as SHA-256. Because the hash 
generation is a one-way function, meaning the hash value is unique to the exact contents of 
the message or document, any effort to modify the message or document results in a 
different, inconsistent hash value.

Following the hash value generation, it is signed by using the organization’s private key, to 
which only they have access. The signed hash is then appended to the document or message 
and is sent to the party it was intended for, along with the organization’s public key. 

The retrieving party can verify the integrity of the message or document by using ECDSA and 
the public key that was shared:

1. The party generates their own hash of the document or message by using the same hash 
function that was used to sign it. 

2. They then use the shared public key to verify the signed hash that was appended to the 
document or message. 

3. As part of the ECDSA verification process, the newly computed hash value is compared 
with the decrypted hash value that was appended to the document. 

If the two hashes match, the party can be assured that the message was not tampered 
with in-transit and the contents of the message or document are exactly what the original 
organization sent. 

If the hashes do not match, the receiving party can conclude that the message was 
tampered with because the hash that they generated differs only from the appended hash 
if the message’s contents was changed in-transit. 

When digital signatures are used, the receiving party can reliably determine the integrity of 
the message because they assume that only the original organization includes the 
mathematically related private key that was used to sign the hash and nobody else. This 
assumption can be made because of the mathematical complexity of the elliptic-curve 
discrete logarithm problem. 

The only way for an adversary to obtain the original organization’s private key is to derive it 
from the associated public key by solving this mathematical problem. However, it is not 
feasible for a conventional computer to solve this problem because it likely takes millions of 
years. As a result, it traditionally was accepted that the appended signed hash is the hash 
value that was generated from the original message or document. Therefore, the integrity can 
be determined by comparing the receiver’s hash output with the appended hash value. 

With the rise of quantum computing, eventually it will be possible for a quantum computer of 
sufficient scale to solve this once considered complex problem in only a matter of hours by 
using Shor’s algorithm. 

An adversary with access to a quantum computer might take an entity’s public key and derive 
the associated private key. After it is in the hands of an adversary, they can alter the contents 
of the message or document undetectably. 
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When the organization sends the message to the intended party, the adversary can run a 
“man in the middle” attack to intercept the original message, modify its contents, re-create a 
new hash value, and then, sign this new hash by using the organization’s private key. This 
newly signed message is then forwarded to the intended party. The party has no way of 
ensuring its integrity because the hash value that was generated is identical to the newly 
appended hash value. 

This ability to undetectably modify messages, documents, and logs by using quantum 
computers can result in disastrous consequences, especially when considering the various 
regulations, such as eIDAS (in the EU), and UETA and E-SIGN (in the US) that allows digital 
signatures to have equal legal status to traditional “wet” signatures. In addition, adversaries 
might tamper with potentially life-saving messages that are used in the automobile industry 
and messages that are used for international government communication. 

3.3.2  Solving the integrity challenge with IBM z16 capabilities

The challenge of ensuring message, document, and log integrity in the face of quantum 
computing can be alleviated by using the dual digital signature schemes that are made 
possible with IBM z16. For more information about for the procedures that are used to enable 
these dual digital signature schemes, see “Quantum-safe digital signatures” on page 107.

By using this IBM z16 capability, organizations can ensure message integrity by digitally 
signing their messages and documents by using a classical cryptographic algorithm and a 
quantum-safe cryptographic algorithm. 

For example, a dual digital signature can be generated by using a classical cryptographic 
algorithm, such as ECDSA, with a quantum-safe cryptographic algorithm, such as 
CRYSTALS-Dilithium. IBM z16 enables this through enhancements in the Crypto Express8S 
(CEX8S) features to provide quantum-safe algorithm APIs. 

As in the past, it is important to continue the use of a classical cryptographic signature 
algorithm, such as ECDSA, to comply with the various standards and compliance 
requirements mandating the use of approved signing algorithms. However, with the use of a 
classical cryptographic algorithm for digital signatures, it is also crucial to begin safeguarding 
information with a quantum-safe cryptographic scheme to ensure that message integrity is 
maintained in the face of CRQC attacks. 

To ensure that message integrity is maintained in the future, an organization can use IBM z16 
to digitally sign their out-bound messages and documents by using two digital signatures. 
This process is explained next (for more information, see “Quantum-safe digital signatures” 
on page 107). 

An organization that wants to ensure the integrity of its messages begins by generating a 
hash of its message by using a cryptographic hash algorithm, such as SHA-256. 

Then, the organization generates two key pairs. For example, they might generate an ECC 
public key pair and a quantum-safe CRYSTALS-Dilithium key pair (ICSF supports the 
CRYSTALS-Dilithium signature algorithm on the CCA and PKCS#11 APIs for IBM z16). 

The organization then signs this hash with ECDSA by using their ECC private key, which 
results in an ECC signature. With generating that ECC signature, the organization also signs 
the same hash by using their CRYSTALS-Dilithium private key to generate a quantum-safe 
signature. The result is that two signatures exist for the single hash of the message, and both 
signatures are appended to the message for verification purposes. 
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Anyone who wants to verify that the message was not modified or tampered with in-transit 
uses the CRYSTALS-Dilithium public key to verify the Dilithium signature and the ECC public 
key to verify the ECC signature. As part of the verification process, the receiving party 
generates the hash value of the message and passes the hash value and the suitable digital 
signature to the signature verification function for each signature algorithm. If the ECC 
signature verifies and the CRYSTALS-Dilithium signature verifies, the party can be assured 
that the message was not tampered with by a bad actor, and thus, message integrity is 
maintained.

As shown in Figure 3-4, success indicates message integrity and authorship by the owner of 
the public key.

Figure 3-4   Validating the authenticity (proof of authorship) and integrity of a message

This dual digital signature scheme that is enabled with IBM z16 solves the challenge of 
ensuring message integrity, even if an adversary can access a quantum computer that can 
run Shor’s algorithm. 

Suppose that the adversary ran a man-in-the-middle attack to intercept the original message, 
modify its contents and then, re-create a new hash value. Although they can sign the new 
hash by using the organization’s ECC private key that they derived by using Shor’s algorithm, 
they have no way of signing the same hash by using the organization’s CRYSTALS-Dilithium 
private key because it is quantum-safe. 

A single ECC signature is of no value because the integrity verification works only if a valid 
ECC signature and a valid Dilithium signature with the message are available. 
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3.3.3  Industry applications

This section describes the wide range of applications that quantum-safe digital signatures 
have across different industries. Also discussed is how financial services organizations, 
automotive companies, software vendors, and even law firms might all benefit from the dual 
digital signature schemes that are enabled with IBM z16 to ensure that their communications 
and data were not tampered with or targeted by adversaries with access to quantum 
computers.

Banking
In the banking industry, digital signatures prove to be a vital necessity in securing financial 
transactions and messages between banks. Society for Worldwide Interbank Financial 
Telecommunication (SWIFT) was created in the 1970s to enable banks across the world to 
share information about financial transactions with each other. These high-value electronic 
transactions and messages can be shared between banks over the SWIFT network, which 
relies on public key infrastructure to digitally sign and encrypt messages. 

The growing presence of quantum computing throughout the world threatens the long-term 
security of these types of banking transactions. Relying on traditional public key cryptography 
alone for securing these interbank transactions poses a vulnerability in message integrity 
because adversaries with access to quantum computers can inevitably forge transactions and 
messages. 

The banking industry might also be one of the first targets of CRQC attacks because of the 
profit potential for cybercriminals. Adopting quantum-safe dual digital schemes in the banking 
industry is a must to secure interbank financial transactions in the future.

Automotive industry
In the automotive industry, manufacturers are constantly innovating new ways of improving 
driver safety. One of these innovations is the rise of vehicle-to-vehicle (V2V) communication 
that aims to make driving safer by allowing vehicles to communicate with each other to 
prevent crashes, traffic, and so on. 

Quantum computing poses security challenges for this V2V communication in which 
messages between vehicles might be tampered with by bad actors. Messages that are 
transmitted between vehicles that are digitally signed by using traditional public key 
cryptography alone, such as RSA or ECDSA, no longer guarantee the integrity of these V2V 
messages when quantum computers of sufficient scale are available to bad actors. 

Adversaries might manipulate messages to create life-threatening situations on highways and 
in busy cities. By taking advantage of the dual digital signing schemes that are available with 
IBM z16, vehicle manufacturers can use quantum-safe digital signing to thwart message 
tampering attacks and make driving safer. 

Software vendors
In software development, vendors aim to secure software distribution by using digital 
signatures that are based on public key cryptography. 

For example, updates to a software release are often digitally signed by using RSA or ECDSA 
encryption algorithms to ensure that customers can verify whether the software was 
tampered with before installation. Oftentimes, these software updates require automatic 
digital signature verification before installing the update. 
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The traditional algorithms that are used today for digitally signing software were reliable in 
ensuring its integrity; however, with the rise of quantum computing, integrity is no longer 
guaranteed because bad actors can tamper with the software undetectably. 

This tampering can result in a customer installing malware on their systems. Therefore, it is 
critical that software vendors implement quantum-safe dual digital signature schemes in their 
products.

Legal industry 
In the legal industry, regulations, such as eIDAS (in the EU) and UETA and E-SIGN (in the 
US) allow digital signatures to have equal legal status to traditional “wet” signatures. 

Historically, confidential legal documents that use digital signature capabilities were not 
forged because the integrity of these documents was ensured through verification of the 
digital signatures by the receiving party. 

However, quantum computers that can quickly derive the private keys serving as the 
underpinnings of these digital signatures eventually will make it possible to manipulate and 
tamper with legal documents by forging digital signatures. 

To avoid advanced legal fraud and impersonation attacks in this era where digital signatures 
serve as legal evidence, it is critical that law firms begin safeguarding their legal documents 
and communications with quantum-safe dual digital signature schemes that are available with 
IBM z16.

3.4  Proof of authorship

Organizations that made their valuable assets digitally accessible, such as legal documents, 
financial statements, historical records, and license code, often ensured nonrepudiation such 
that the public can trace back these digital assets to the original creator. 

Proof of authorship was achieved by using digital signatures where anyone can verify the 
authenticity of a digitally signed document or digital asset. Digital signatures also make it 
impossible for any unknown entity to disseminate information or assets to the public and claim 
it came from someone else, which ensures responsibility for the distribution of digital 
information. 

In the legal industry, various regulations are in place that allow digital signatures to have 
equal legal status to traditional “wet” signatures. Because legal documents might feature long 
lifetimes, the signatures on them might need to be secure for decades.

With the rise of quantum computing, adversaries with access to a quantum computer of 
sufficient scale can manipulate legal history by forging digital signatures. As a result, the legal 
underpinnings of digitalization are now vulnerable. 

This use case illustrates how organizations can avoid advanced legal fraud and 
impersonation attacks by using the quantum-safe capabilities that are available on IBM z16. 
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3.4.1  Problem statement 

Organizations traditionally made their digital assets public while ensuring proof of authorship 
and nonrepudiation. Anyone accessing or viewing these digital assets can verify exactly from 
who it came, which is made possible by using digital signatures. 

Nonrepudiation and proof of authorship are ensured because these digital signatures are 
generated by using a private key that is only known by the signer. As a result, the signer has 
no means of repudiating their signature that is added to the document. 

If a dispute occurs, proof of authorship enables the document’s authorship to be supported by 
evidence, being the holder of the private key.

Digital signatures
Digital signatures are made possible with the use of public key cryptography. One example of 
a popular cryptographic algorithm for digital signatures is ECDSA. Organizations that wanted 
to digitally sign a document so that the public can trust that it came from them begins by 
generating an ECC key pair that consists of a private and public key. 

They then use the ECDSA signing algorithm to digitally sign their document. The algorithm 
works by first calculating a cryptographic hash of the document by using a cryptographic hash 
algorithm, such as SHA-256. This hash is unique to the exact contents of the document. 

If the document was modified, the resulting hash output is different. As part of the signing 
algorithm, the hash value then is signed by using the signer’s private key, which only they can 
access. The signed hash is appended to the document and made publicly available along 
with the signer’s public key. 

Now that the document is digitally signed, anyone who wants to access the document can 
verify its authenticity by using ECDSA and the public key. The receiver uses the public key 
that they received to verify the signed hash that is appended to the document. 

They also generate a hash output of the same document by using the same hash function 
that was used to sign the document. The algorithm then compares the hash value that the 
receiver computed with the decrypted hash value that was appended to the document. If the 
two hashes match, the public key sender is verified as the true author of the document 
because it is assumed that only they have the mathematically related private key.

Elliptic-curve discrete logarithm problem
The strength of these digital signatures for proving authorship of a digital asset is a result of 
the mathematical complexity of the elliptic-curve discrete logarithm problem. The only way to 
derive the private key from the associated public key is to solve this mathematical problem, 
which is not feasible for conventional computers because it likely takes millions of years to 
solve the elliptic-curve discrete logarithm problem. 

Therefore, it was always assumed that the private key holder is the author of the digitally 
signed document, which is how proof of authorship can be ensured. As a result, public key 
cryptography alone was considered secure for digital signatures. 

With the rise of quantum computing, it eventually will be possible for a quantum computer of 
sufficient scale to solve this once considered complex problem in only a matter of hours by 
using Shor’s algorithm. An adversary with access to a quantum computer might take an 
entity’s public key and derive the associated private key, which can have disastrous 
consequences. 
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By using that entity’s private key, the adversary can forge their digital signature to manipulate 
legal history and claim that the digital assets they create were authored by the entity whose 
private key they possess. 

Making matters worse, many legal documents (and the signatures on them) are in public 
records; therefore, an adversary can easily obtain them and attack the cryptography with a 
quantum computer. No “hacking” is necessary to get to the data to be attacked. Documents, 
messages, certificates, software, and transactions all can be forged. Therefore, an identity 
over the internet is no longer guaranteed. 

3.4.2  Solving this challenge with IBM z16 capabilities 

Capabilities that are provided by IBM z16 allow organizations to solve this challenge that is 
faced today with the threat of quantum computing by using dual digital signature schemes 
and quantum-safe key generation. For more information about enabling these dual digital 
signature schemes, see “Quantum-safe digital signatures” on page 107. 

With IBM z16, it is possible for organizations to digitally sign their valuable assets by using a 
classical cryptographic algorithm and a quantum-safe cryptographic algorithm. The ability to 
use a quantum-safe cryptographic algorithm, such as CRYSTALS-Dilithium, with a classical 
cryptographic algorithm, such as ECDSA, is supported by the quantum-safe algorithm APIs 
within the new Crypto Express cards (CEX8S) that was provided with IBM z16. 

The value in the use of this dual digital signature scheme is two-fold: First, as in the past, it is 
important to use a classical cryptographic signature algorithm, such as ECDSA, because 
various standards and compliance requirements exist that require standards-approved 
signing algorithms. 

Uncertainty also exists about how those standards might change in the future with the rise of 
quantum computing. Although newly developed algorithms might be considered 
“quantum-safe,” it is never guaranteed that these algorithms are not to be found insecure. 

Therefore, as a minimum security measure, it is beneficial to continue the use of these 
classical signature schemes to thwart attacks from conventional computers. Also, to begin 
safeguarding valuable information in the future, even in the face of high-powered quantum 
computers, it is important to buttress this protection with a known quantum-safe cryptographic 
signature scheme with IBM z16. 

To maintain proof of authorship and nonrepudiation for an organization’s digital assets, they 
use IBM z16 to create two digital signatures that public entities can verify (see Figure 3-4 on 
page 40):

1. A hash of their document is generated by using a cryptographic hash algorithm, such as 
SHA-256.

2. The organization generates two key pairs. For example, they might generate an ECC 
public key pair and a CRYSTALS-Dilithium key pair (ICSF supports the 
CRYSTALS-Dilithium signature algorithm on the CCA and PKCS#11 APIs for IBM z16). 

3. The organization signs this hash with ECDSA; for example, by using their ECC private 
key, which results in an ECC signature. Along with generating that ECC signature, the 
organization also signs the same hash by using their CRYSTALS-Dilithium private key to 
generate a quantum-safe signature. 

This process results in having two signatures for the single hash of the message, and both 
signatures are appended to the digital document for verification. 
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Anyone who wants to verify that this organization authored the document uses the 
CRYSTALS-Dilithium public key to verify the Dilithium signature and the ECC public key to 
verify the ECC signature. If both signatures are successfully verified, the verifying party can 
be assured that the document was authored by the organization. 

The threat that is created by quantum computers of sufficient scale to forge digital signatures 
is negated because both signatures must verify. 

Even if an adversary with access to a quantum computer can run Shor’s algorithm to derive 
the ECC private key by using the related public key, they cannot forge the organization’s 
signature because they cannot derive their CRYSTALS-Dilithium private key. 

Suppose a cybercriminal with access to a quantum computer can create a fake document 
and sign it with the derived ECC private key. The ECC signature is created, but the adversary 
does not have the CRYSTALS-Dilithium private key to create a Dilithium signature. 

A single ECC signature is of no value because the verification works only if a valid ECC 
signature and Dilithium signature exists with the document. 

For more information, see “Quantum-safe digital signatures” on page 107.
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Chapter 4. Getting ready for quantum-safe 
cryptography

In this chapter, we introduce the cryptographic components that are available on the IBM Z 
platform. 

We also describe an approach to help discover and classify data, establish a cryptographic 
inventory by using various tools, and adopt quantum-safe cryptography on IBM Z. 

Discussions about best practices, mitigation options, and encryption key management tools 
are also included.

This chapter includes the following topics:

� 4.1, “IBM Z cryptographic components overview” on page 48
� 4.2, “Steps towards quantum protection” on page 56
� 4.3, “Best practices, mitigation options, and tools” on page 65
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4.1  IBM Z cryptographic components overview

The cryptographic stack on the IBM Z platform consists of many different hardware and 
software components that provide unique capabilities to aid in securing your environment. In 
this section, the components that are available for quantum-safe cryptography are briefly 
described. We also review the required levels of hardware and software components to 
implement quantum-safe cryptography in your IBM Z environment.

4.1.1  IBM Z cryptographic hardware components

On the hardware side, quantum-safe cryptography is supported by the Crypto Express 
hardware security module (HSM) and the Central Processor Assist for Cryptographic 
Functions (CPACF). 

Cryptographic functions can be categorized in the following groups from an application 
program perspective:

� Symmetric cryptographic functions and hashing functions are provided by CPACF or 
Crypto Express features

� Asymmetric cryptographic functions and digital signatures are provided by Crypto Express 
features, while some are also provided by CPACF 

For more information about the different types of cryptography, see 1.2.1, “Cryptography 
overview” on page 5.

CPACF
Each processor unit (PU) chip in the IBM Z platform has an independent cryptographic 
engine (known as a cryptographic assist). CPACF is a high performance, low-latency 
coprocessor that performs symmetric key encryption operations and calculates message 
digests (hashes) in hardware. 

The following algorithms are supported:

� Advanced Encryption Standard (AES) for 128-bit, 192-bit, and 256-bit keys

� Data Encryption Standard (DES) and Triple Data Encryption Standard (TDES)

� Hashing algorithms: 

– Secure Hash Algorithm (SHA)-1
– SHA-2
– SHA-3
– SHAKE

CPACF supports Elliptic Curve Cryptography (ECC) clear key, which improves the 
performance of Elliptic Curve (EC) algorithms. The following algorithms are also supported:

�  EdDSA (Ed448 and Ed25519)
�  ECDSA (P-256, P-384, and P-521)
�  ECDH (P-256, P-384, P521, X25519, and X448)
�  Support for protected key1 signature creation

z/OS Integrated Cryptographic Services Facility (ICSF) uses CPACF to accelerate 
cryptographic functions. For ICSF to use these functions, Feature Code (FC) 3863 must be 
enabled. This FC is not enabled by default. 

1  A protected key is a data-encrypting key that is encrypted by a CPACF wrapping key and used within the IBM Z 
platform. 
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IBM z16 includes counters for CPACF to track cryptographic algorithms, bit lengths, and key 
security. The CPACF counters provide evidence for compliance (which cryptography is used), 
performance (frequency of cryptography use), and configuration (proof of change). 

For more information, see “IBM ICSF cryptographic usage tracking” on page 59, and 
“Formatting cryptographic usage statistics records” on page 75. 

Crypto Express
Each Crypto Express HSM contains cryptographic engines that can be configured as a 
Common Cryptographic Architecture (CCA) cryptographic coprocessor (CEXnC)2, as an 
Enterprise Public Key Cryptography Standard #11 (PKCS #11) cryptographic coprocessor 
(CEXnP), or as an accelerator (CEXnA) for public key and private key cryptographic 
operations that are used with SSL/TLS processing.

Crypto Express coprocessors enable secure key generation and operations under the 
direction of ICSF. It is recommended that at least two of each type (CCA coprocessor or 
Enterprise PKCS#11 coprocessor or accelerator) be configured for redundancy. 

If one coprocessor must be taken offline, the second coprocessor that is loaded with same 
master keys3 can handle new requests. 

On IBM z15 and IBM z16, up to 60 Crypto Express coprocessors can be configured, each 
supporting up to 85 cryptographic domains4. Each domain is protected by a master key, 
which prevents access across domains and effectively separates the contained keys.

Quantum-safe algorithms are supported by the Crypto Express7S and Crypto Express8S 
coprocessors. For more information about the supported algorithms for each coprocessor 
type, see 4.1.3, “Minimum hardware and software for quantum-safe cryptography support” on 
page 55.

Secure boot technology
In addition to the quantum-safe cryptography support in the CPACF and Crypto Express 
features, IBM z16 secure boot technology uses quantum-safe and classical digital signatures 
to perform a hardware-protected verification of the Initial Machine Load (IML) firmware 
components. This firmware integrity protection is anchored in a hardware-based Root of Trust 
(RoT) to ensure that the system starts securely by keeping unauthorized firmware (or 
malware) from taking over during start.

Trusted Key Entry
As an option, a Trusted Key Entry (TKE) Workstation can be used to securely manage and 
load cryptographic keys. Keys can be loaded remotely for multiple Crypto Express HSMs. A 
TKE is required for Crypto Express coprocessors in Enterprise PKCS#11 (EP11) mode. The 
TKE feature contains a combination of hardware, firmware, and software. An optional smart 
card reader can be added to the TKE Workstation.

With z16 and TKE 10.0, quantum-safe encryption algorithms are now used for key exchange 
For more information, see “Trusted Key Entry” on page 69.

2  n is a 7 or 8, which represents a Crypto Express7S feature or Crypto Express8S feature, respectively.
3  A master key is a special key-encrypting key (KEK) that is in a tamper-responding, Crypto Express adapter. A 

master key sits at the top level of a KEK hierarchy.
4  A domain acts as an independent cryptographic device with its own master key. Domains in the same Crypto 

Express are isolated. Domains are assigned to IBM Z logical partitions (LPARs).
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Figure 4-1 shows the hardware components for implementing quantum-safe cryptography in 
an IBM Z environment.

Figure 4-1   IBM Z cryptographic hardware components

For more information about the cryptographic hardware components, see IBM z16 (3931) 
Technical Guide, SG24-8951.

Crypto Express features
Crypto Express8S and Crypto Express7S features provide quantum-safe RoT and 
quantum-safe cryptographic APIs for application program use (see Table 4-1).

Table 4-1   Crypto Express features for quantum-safe cryptography

Crypto Express8S 
When the Crypto Express8S adapters are configured in CCA or EP11 mode, the following 
support for quantum-safe symmetric algorithms (AES, CMAC, and HMAC), hashing 
algorithms (SHA-2, SHA-3), and digital signature algorithms are enabled by using:

� CRYSTALS-Dilithium 6,5 (Round 2)
� CRYSTALS-Dilithium 8,7 (Round 2)

Feature Description

Crypto Express8S 
Dual-HSM 
(FC 0908)

This feature contains two IBM 4770 PCIe cryptographic coprocessors, which 
can be independently defined as a coprocessor or an accelerator. Supported on 
IBM z16.

Crypto Express8S 
Single-HSM
(FC 0909)

This feature contains one IBM 4770 PCIe cryptographic coprocessor, which can 
be defined as a coprocessor an accelerator. Supported on IBM z16.

Crypto Express7S 
Dual-HSM
(FC 0898)

This feature contains two IBM 4769 PCIe cryptographic coprocessors, which 
can be independently defined as a coprocessor or an accelerator. Supported on 
IBM z15 and IBM z16.

Crypto Express7S 
Single-HSM
FC 0899)

This feature contains one IBM 4769 PCIe cryptographic coprocessor, which can 
be defined as a coprocessor or an accelerator. Supported on IBM z15 and 
IBM z16
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� CRYSTALS-Dilithium 6,5 (Round 3)
� CRYSTALS-Dilithium 8,7 (Round 3) 

Also, the following quantum-safe key encapsulation mechanisms (KEM) are supported:

� CRYSTALS-Kyber 1024 (Round 2) is implemented as part of a hybrid key exchange 
mechanism

� Hybrid key agreement scheme combining Elliptic Curve Diffie-Hellman (ECDH) and 
CRYSTALS-Kyber

Crypto Express7S
When the Crypto Express7S adapters are configured in CCA or EP11 mode, the support for 
quantum-safe symmetric algorithms (AES, CMAC, and HMAC), hashing algorithms (SHA-2, 
SHA-3), and digital signature algorithms are enabled through CRYSTALS-Dilithium 6,5 
(Round 2).

For more information about quantum-safe algorithms, see “New algorithms to counter CRQC 
attacks” on page 11. 

Hybrid key exchange mechanism
The use of secure keys5 and protected keys in the IBM Z encryption process ensure that 
data-encrypting keys are not visible to unauthorized callers (see Figure 4-2).

Figure 4-2   IBM z16 and Crypto Express8S process to create protected keys

When first created, the data-encrypting key is wrapped (encrypted) as a secure key by ICSF 
by using a master key, which is stored in the hardware security module (HSM) of an assigned 
Crypto Express adapter when configured in CCA mode.

5  A secure key is a data-encrypting key that is encrypted by a master key or key-encrypting key and never appears in 
clear text that is outside of a secure environment, such as a tamper-responding HSM, or IBM Z firmware. Secure 
keys can be stored in an ICSF key data set or returned to the ICSF caller.
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In IBM z16 firmware, a hybrid key exchange mechanism that includes CRYSTALS-Kyber, 
CRYSTALS-Dilithium, and ECDH is used to securely negotiate a shared transport key (AES 
256-bit key) between the Crypto Express8S HSM and the CPACF. The shared transport key is 
used to protect data-encrypting keys that are sent from the Crypto Express8S HSM to the 
CPACF by way of IBM z16 firmware as part of the runtime process to create protected keys.

A CPACF wrapping key is used to rewrap a data-encrypting key as a protected key. The 
protected key is sent to ICSF for use by authorized callers. The CPACF wrapping key is in a 
protected area of the hardware system area (HSA) of the IBM Z platform, which is not 
accessible to the operating system, applications, or users.

The following process is used to create a protected key from a secure key, as shown in 
Figure 4-2 on page 51:

1. ICSF retrieves the data-encrypting key (DK) that is stored in the CKDS as a secure key 
(encrypted by using a master key [CCAMK]).

2. ICSF starts the process by sending the secure key (DKCCAMK) to IBM Z firmware. 

3. IBM Z firmware sends the secure key to the suitable domain in the Crypto Express8S 
HSM. 

4. Crypto Express8S HSM decrypts the secure key by using the master key and rewraps the 
data-encryption key by using a transport key (TK). The transport key is derived from two 
independent contributions of entropy as part of the hybrid key exchange mechanism:

a. The ECDH calculation of the “Z” shared secret6, by using the private key of the IBM Z 
firmware and the public key of the Crypto Express8S HSM that is in the CPACF, and 
the corresponding public and private keys that are in the Crypto Express8S HSM.

b. The random number that is generated in the Crypto Express8S HSM is sent encrypted 
under the CRYSTALS-Kyber public key to the CPACF, which is then signed by a 
CRYSTALS-Dilithium private signing key.

5. The rewrapped data-encrypting key (DKTK) is sent back to IBM Z firmware.

6. IBM Z firmware starts CPACF to unwrap and rewrap the data-encrypting key by using a 
CPACF wrapping-key (WK) to create a protected key (DKCPCFWK).

7. IBM Z firmware returns the protected key (DKCPCFWK) to ICSF.

8. ICSF caches the protected key in its address space and optionally returns the protected 
key to the authorized caller.

4.1.2  IBM Z cryptographic software components

z/OS ICSF provides the application programming interfaces (APIs) by which applications 
request cryptographic services, such as the following examples: 

� Encryption and decryption
� Digital signature generation and verification
� Hash-based Message Authentication Code (HMAC) generation and verification
� Key and key pair generation
� Data hashing

ICSF callable services and programs can be used to generate, maintain, and manage 
operational keys (also known as data-encrypting keys), which are used in cryptographic 
operations. 

6  Known only to the entities involved in a communication. Possession of that shared secret can be provided as proof 
of identity for authentication.
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Figure 4-3 shows the ICSF architecture and its relationship with the IBM Z hardware and 
software components.

Figure 4-3   IBM Z software cryptographic components

ICSF supports two cryptographic architectures: CCA and Enterprise PKCS #11 (EP11). ICSF 
provides quantum-safe algorithms in both architectures. Software support for the algorithms 
is available by way of ICSF. 

Hardware support for the algorithms is available through the Crypto Express7S or later. For 
more information about supported algorithms for each coprocessor type, see “Minimum 
hardware and software for quantum-safe cryptography support” on page 55.

ICSF provides callable services and utilities to generate and store cryptographic keys into 
ICSF Key Data Sets (KDS). Each KDS is a VSAM data set for persistent objects (such as 
keys and certificates) with programming interfaces for object management. Each record in the 
KDS contains the object and other information about the object.

The following types of ICSF Key data sets are available:

� CKDS: Cryptographic Key Data Set: Stores CCA Symmetric Keys such as AES, DES, and 
HMAC.

� PKDS: PKA Key Data Set: Stores CCA Asymmetric keys such RSA, ECC, and QSA.

� TKDS: Token Data set: Stores PKCS #11 Keys and Certificates.

If a PKDS is allocated and you want to store CRYSTALS-Dilithium or CRYSTALS-Kyber CCA 
key tokens, you must convert your PKDS over to KDSRL format. For more information, see 
“Converting your PKDS to KDSRL format” on page 99.
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Master keys are used to protect sensitive operational keys that are used in your system. The 
number and type of master keys active in your system depend on your hardware configuration 
and application requirements:

� DES master key protects DES keys
� AES master key protects AES and HMAC keys
� RSA master key protects RSA keys
� ECC master key protects ECC, RSA, CRYSTALS-Dilithium, and CRYSTALS-Kyber keys

Master keys are stored within the secure hardware boundary of the Crypto Express HSM. 
The values of the master keys never appear in the clear outside the Crypto Express HSM.

For a master key to become active, the current active master key verification pattern (MKVP) 
in the Crypto Express HSM and the MKVP in the KDS header must match. When a new 
Crypto Express HSM is added to your environment, it must be loaded with the same master 
keys that were used to initialize the KDS. 

You can verify the MKVPs in the Crypto Express HSM match the MKVP in the KDS by using 
the D ICSF, MKVPS command (see Example 4-1).

Example 4-1   Output from D ICSF, MKVPS command

D ICSF, MKVPS                                  
CSFM668I 18.08.59 ICSF MKVPS 129              
  CKDS  ICSF.CKDS.NEW                         
    AES MKVP Date=2022-03-25 00:25:40         
    DES MKVP Date=2022-03-23 13:24:53         
               ID     AES      DES            
    KDSMKVPS  ....   265995   0C3BE0          
    SYSZ      7C00   265995   0C3BE0          
    SYSZ      7C01   265995   0C3BE0          
  PKDS  ICSF.PKDS.NEW                         
    ECC MKVP Date=2022-03-23 13:25:49         
    RSA MKVP Date=2022-03-23 13:25:49         
               ID     ECC      RSA            
    KDSMKVPS  ....   2ADB6C   4727DB          
    SYSZ      7C00   2ADB6C   4727DB          
    SYSZ      7C01   2ADB6C   4727DB          
  No TKDS defined or no EP11 adapters online

For more information about the hardware ICSF supports, and master key types and how they 
are entered when ICSF first starts, see z/OS Cryptographic Services ICSF Administrator’s 
Guide, SC14-7506.
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4.1.3  Minimum hardware and software for quantum-safe cryptography support

Support for quantum-safe algorithms for CCA and PKCS #11 are provided in the IBM z15 and 
IBM z16 platforms. To ensure you can transition your applications to quantum-safe 
algorithms, verify that your environment meets the minimum hardware and software 
requirements for each algorithm. 

Table 4-2 on page 55 lists the minimum hardware and software prerequisites to support 
quantum-safe cryptography on IBM z15 and IBM z16, based on algorithm strength and 
version.

Table 4-2   Minimum hardware and software prerequisites

Algorithm Algorithm 
strength

Cryptographic 
hardware

ICSF required 
APARs

IBM Z platforma

a. Check with your IBM representative for IBM Z hardware driver levels that support quantum-safe 
cryptography on IBM z15 and IBM z16.

CRYSTALS-
Dilithium

CRYSTALS-
Dilithium 6,5
Round 2

Crypto Express7S
CCA coprocessor 

HCR77D1
OA58880

IBM z15

Crypto Express7S
EP11 coprocessor

HCR77D1
OA58358

CRYSTALS-
Dilithium 6,5 
Round 3

CRYSTALS-
Dilithium 8,7 
Round 2

CRYSTALS-
Dilithium 8,7 
Round 3

Crypto Express8S
CCA coprocessor 

HCR77D1 
OA61609

IBM z16

Crypto Express8S
EP11 coprocessor

HCR77D2
OA61609

CRYSTALS-
Kyber

CRYSTALS-
Kyber 1024 
Round 2

Crypto Express8S
CCA coprocessor

HCR77D1 
OA61609

IBM z16 

Crypto Express8S
EP11 coprocessor

HCR77D2
OA61609
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4.2  Steps towards quantum protection

As you begin to plan your transition to quantum-safe technology, several stages must be 
considered. These stages include discovering and classifying the data, creating a 
cryptographic inventory, considering cryptographic agility, and adopting quantum-safe 
cryptography. These topics are described in this section. 

4.2.1  Discovering and classifying the data

It is important to classify and identify your most sensitive and valuable data. Classification of 
data is vital to help distinguish high-value information from information that does not have the 
same protection requirements. Protection requirement applies to data that belongs to your 
clients and the data you own. 

This process also involves identifying the location of the data and understanding whether any 
compliance requirements or regulations are associated with the retention of that data. 

Another essential consideration is identifying the internal data that your organization 
considers most valuable. It is important to create and manage a data inventory and define 
ownership of the data. Classifying data helps prioritize where to apply quantum-safe methods 
to protect the data. Some data must be protected because of regulations or standards that 
require compliance and those cases and the level of protection that is must be identified.

Some common types of data that must be protected include confidential business data, 
intellectual property data, and personally identifiable information (PII), such as social security 
numbers or drivers license numbers. 

Confidential business data can include items, such as product release information, marketing 
strategies, financial reports, and communications with business partners. 

Intellectual property can include design documents, research findings, trade secrets, and 
formulas. Each organization must identify the information that is most critical to protect. 

Although not all data needs the same level of attention, prioritization is required in most cases 
during the quantum-safe cryptographic journey. It is important to know where your 
organization’s most valuable or sensitive data resides.

Today, you might use encryption at the infrastructure level for data-in-flight or data-at-rest, and 
in your applications through middleware or custom application code. 
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Figure 4-4 shows where data encryption might be occurring today in your environment.

Figure 4-4   The encryption pyramid

IBM Z pervasive encryption7 can be used to provide quantum-safe protection for data at-rest 
with AES.

During the discovery step, you need help from the applications owners to identify the data 
they are processing in their applications. You also need the help of your risk and compliance 
team because they might already have a mapping of sensitive information and its location. If 
not, now is the time to collect such information and define ownership and location of all 
sensitive data.

After the ownership of the data and its sensitivity is established, it is key to prioritize the 
analysis of the applications and assets if encryption is used and if it is used, which 
cryptographic algorithm is being used. Based on this priority list, the application can enter the 
cryptographic inventory phase.

A sample application data asset inventory is shown in Figure 4-5.

Figure 4-5   Sample data inventory sheet

7  For more information, see Getting Started with z/OS Data Set Encryption and Getting Started with Linux on Z 
Encryption for Data At-Rest.

Data
Type/Assset Application Owner Sensitiviy Priority

Data_1 Application_1, Application_3 Owner_1 High 1
Data_2 Application_2 Owner_2 Low 3
Data_3 Application_4, Application_5 Owner_1 High 2
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4.2.2  Establishing a cryptographic inventory

Another vital stage is the creation of a cryptographic inventory, which is an important security 
artifact. A cryptographic inventory helps document the cryptographic algorithms that are used 
and why they are used. 

For example, if the cryptography is used to digitally sign documents, the cryptographic 
inventory indicates specific information, such as the name of the signing application, which 
cryptographic algorithms are used, what are the lengths of the cryptographic keys that are 
used, and the details of the crypto algorithm provider. 

It is important to identify how the documents are signed to determine which mitigation steps 
are required. Therefore, creating a repository that shows the cryptographic algorithms that 
are in use within the organization is important. 

Also, consider areas where cryptography can be hidden from obvious view. Examples include 
configuration options that determine the cryptography in use (such as TLS configurations) 
and key containers (such as certificates).

If a vendor developed the component that uses cryptography, it is necessary to discuss this 
topic with that vendor to understand the cryptography that is used and the vendor’s plans for 
adopting quantum-safe technology. After you have this type of information, you must 
determine whether the current cryptographic protection is sufficient, or if a mitigation action is 
required. 

It also is important that you understand which algorithms are not considered quantum-safe 
(see 1.4, “Cryptographic vulnerabilities possible with quantum computers” on page 9).

A cryptographic inventory includes many items, such as the following examples:

� Component or application under evaluation
� Function or feature that uses crypto 
� Person responsible (Who owns or uses the component?)
� Symmetric algorithms, function, and key size
� Asymmetric algorithms, function, and key size
� Hash algorithms and digest size
� Crypto algorithm implementation (hardware and software)
� Crypto provider (HSM and library)
� Crypto vendor (IBM or open-source)
� Interoperability with business or crypto partners
� Key provisioning and storage

The analysis is performed based on the priority list that is established when the discovering 
and classifying the data step is done (see Figure 4-5 on page 57). Each type of data and 
application must be assessed to identify the cryptographic algorithm in use. Encryption can 
be carried out at the infrastructure or at the application level.

Application owners should know whether and what encryption algorithm is used. If not, 
several tools can be used to assist during the cryptographic inventory step, including the 
following examples:

� IBM z/OS Integrated Cryptographic Service Facility (ICSF)
� IBM Application Discovery and Delivery Intelligence (ADDI)
� IBM Crypto Analytics Tool (CAT)
� IBM z/OS Encryption Readiness Technology (zERT)

All information that is captured must be recorded and stored in a safe place. A sample 
cryptographic inventory sheet (see Figure 4-8 on page 64).
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IBM ICSF cryptographic usage tracking
ICSF cryptographic usage tracking with ICSF HCR77C1 (or later) supports data collection (in 
SMF records) for Crypto Express coprocessors, ICSF callable services, and cryptographic 
algorithm. The use of the SMF records that are created by the usage tracking provides the 
following identification information:

� All the jobs (or tasks) that use ICSF cryptographic services
� Cryptographic algorithm that is used (along with their strength)

The use of ICSF cryptographic usage tracking is an efficient way to build, over time, an 
inventory of the cryptographic algorithm usage and identify the candidate to a migration to 
quantum-safe algorithm.

Because ICSF cryptographic usage tracking data is stored in SMF records, you can use the 
ICSF samples to format the records. You can also use other tools, such as IBM Security 
zSecure Audit, for reporting purposes. 

You also can send your cryptographic usage to security information and event management 
(SIEM) software, such as IBM Security zSecure Adapter for SIEM, which can act as a central 
repository for tracking cryptographic algorithm usage real time.

A use case for the use of ICSF cryptographic usage tracking is a first view of your production 
application environments to identify where ICSF cryptographic services (and what algorithm) 
are being used. From the SMF records, you can identify all the cryptographic services that are 
used by applications, middleware, or infrastructure components.

After the classification of the results (which are identified as non-quantum-safe algorithm and 
which are quantum-safe), you can prioritize your approach and use other tools to further 
complete the inventory.

Later, the results of this analysis, which are classified as quantum-safe, can be analyzed with 
other tools to complete your cryptographic inventory.

IBM Application Discovery and Delivery Intelligence
IBM Application Discovery and Delivery Intelligence (ADDI) is an analytical platform for 
application modernization. It uses cognitive technologies to analyze mainframe applications 
and quickly discover and understand interdependencies of changes.

By using ADDI and the Crypto Analysis function, you can:

� Discover where and what cryptography is used in applications

� Support migration and modernization planning:

– Quickly reacting to security issues
– Store results in a repository

� Capture valuable metadata and dependencies:

– Identifies ICSF Crypto APIs
– Identifies Rule Array and other important parameters

For example, you know that one of your critical applications (written in COBOL) is using 
cryptography, but you do not know exactly how this encryption capability was implemented 
and what encryption algorithm (and “options”) were used.

By using ADDI and its Crypto Analysis, you can quickly import the COBOL source and 
discover what ICSF cryptographic APIs and parameters were used.
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For more information, see “Using IBM Application Discovery and Delivery Intelligence” on 
page 77.

IBM Crypto Analytics Tool
The IBM Crypto Analytics Tool (CAT) was developed to help provide up-to-date monitoring of 
cryptography-related information about z/OS in the enterprise. CAT is designed to combine 
and present cryptographic information in a way that helps ensure compliance and policy 
enforcement. 

The CAT Agent, running on z/OS, collects cryptographic information across the enterprise 
that is then made available through an IBM Db2® for z/OS database to the CAT Monitor that 
is running on your desktop.

The CAT Monitor provides overviews, queries, and reports to better manage the 
cryptographic setup.

With CAT, you can generate reports on your cryptographic configuration, compare the 
reports, and define and apply policy to your cryptographic elements (cryptographic cards, 
keys, and so on).

CAT also helps you identify any cryptographic object that is not quantum-safe in your current 
keystores. CAT also provides monitoring over time to ensure that no non-quantum-safe 
cryptographic object are created. 

For example, if your applications use encryption through middleware, you can identify the 
keys in the keystore that belong to this application with the CAT Monitor. You also can verify 
how cryptographic security was implemented to protect cryptographic objects, and who can 
access them8.

For more information, see “Using IBM Crypto Analytics Tool” on page 82.

IBM z/OS Encryption Readiness Technology
z/OS Encryption Readiness Technology (zERT) is a Communications Server feature that 
provides information about the cryptographic network protection state of TCP/IP and 
Enterprise Extender connections that end on a z/OS system. 

zERT writes its data collection in SMF records (SMF type 119 subtype 11 and subtype 12).

zERT helps you answer the following questions:

� What TCP/IP and Enterprise Extender traffic is being protected (and which is not)?

� How is that traffic protected? For example, what protocols are being used, which 
cryptographic algorithms are being used, and what key lengths?

� Who on my z/OS system uses or produces the network traffic, whether it is protected or 
not?

� Where is the remote endpoint for that traffic?

� With zERT policy-based enforcement, you can write rules to enforce real-time compliance 
monitoring that can generate audit events and even take defensive actions that are based 
on the observed cryptographic protection attributes of each TCP/IP connection.

8  Only when using IBM RACF
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A z/OS Management Facility (z/OSMF) plug-in that is called IBM zERT Network Analyzer is 
provided since z/OSMF V2R49. IBM zERT Network Analyzer is a web-based graphical user 
interface10 that z/OS network security administrators can use to analyze and report on data 
that is reported in zERT Summary records (SMF type 119 subtype 12).

By using IBM zERT Network Analyzer, you can build your own cryptographic inventory for 
data that is in-flight by using its reporting capabilities. The reports can be exported in CSV 
format to be integrated in enterprise-level repository, if needed.

Finally, starting with z/OS 2.5, zERT provides a feature that is called zERT Policy 
Enforcement. With zERT Policy Enforcement, you can define required network security policy, 
including the encryption algorithm in use and then, direct the TCP/IP stack to take specific 
actions for connections that do not meet that defined policy.

When triggered, the policy can take the following actions to keep your environment 
quantum-safe:

� Allow the connection with no logging

� Write an audit record by using the System Management Facility (SMF) or real-time 
Network Management Interface (NMI)

� Write a syslog daemon message

� Write a console message

� Reset the connection

For more information, see “Using IBM z/OS Encryption Readiness Technology” on page 89.

4.2.3  Considering cryptographic agility

Cryptographic agility is about the ability to quickly adopt new cryptography in an application, 
component, or system with minimal impact to the underlying infrastructure. Over time, we saw 
and understand that cryptographic algorithms change. 

However, many applications used hardcoded cryptographic primitives that might not be easy 
to change. Going forward, we must consider ways to make it as easy as possible to manage 
the cryptography that is in use in our enterprises. 

Several dimensions of agility must be considered (see Table 2-4 on page 25):

� Update cryptographic algorithms when broken
� Change cryptographic algorithms when new regulatory requirements exist
� Monitor cryptographic algorithms to ensure that those algorithms are used correctly
� Retire cryptographic algorithms when obsolete

Cryptographic agility is a core component of cyber resiliency. If a cryptographic algorithm is 
found to no longer be secure, the ability to switch to a secure algorithm quickly is essential. 
We must consider effective ways to manage and use cryptography and automation to simplify 
the transition to new cryptography.

One way to achieve cryptographic agility is to decouple the cryptographic algorithm from the 
application code, which makes the change to another encryption algorithm faster, without 
changing the application code again. 

9  Also supported by z/OS 2.3 and PTFs for zERT Network Analyzer V2R3 APAR PH03137 and z/OSMF V2R3 
APARs PH04391 and PH00712.

10  IBM Db2 11 for z/OS or later is required.
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For example, Advanced Crypto Service Provider (ACSP) can be used to provide an 
abstraction layer between the application code and the encryption of data by using the IBM Z 
capabilities.

Advanced Crypto Service Provider
The enterprise cryptographic environment can be spread over several different systems with 
individual HSMs and application landscape. Therefore, ensuring that all the platforms and 
environments are remaining quantum-safe might be a challenge.

To help achieve cryptographic agility in a client/server environment, you can centralize the 
execution of cryptographic operations and establish Crypto-as-a-Service.

One of the IBM Z solutions for establishing Crypto-as-a-Service is to use the cryptographic 
provider Advanced Crypto Service Provider (ACSP).

With ACSP, you can use your low-used IBM Z cryptography and make it available for all your 
platforms where applications must use quantum-safe cryptography.

By using the User Defined Functions (UDF) with ACSP, you can implement business-specific 
functions that are made available through ACSP where the application requests cryptography, 
without needing to handle the encryption by alone. This ability makes the application 
crypto-agile because the cryptographic policy is applied at the ACSP server level, which 
ensures that the correct algorithm is used to encrypt and decrypt the data (see Figure 4-6).

Figure 4-6   UDF calling path for a local and deployed set-up
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A possible architecture that implements cryptographic agility by using ACSP is shown in 
Figure 4-7.

Figure 4-7   ACSP architecture used for cryptographic agility

4.2.4  Adopting quantum-safe cryptography 

After you know your current cryptography state, examine the technical mitigations that are 
available to you. Understand who can provide the necessary technology. Determine which 
options must be applied to each of your use cases. 

For more information about common use case examples, see Chapter 3, “Using 
quantum-safe cryptography” on page 27.

A risk assessment is performed to determine the priority of implementation and testing. Some 
implementation options include strengthening the symmetric algorithms that are used for data 
protection. 

Use hybrid key exchange methods or dual signing schemes that use classical and 
quantum-safe algorithms. When necessary, the use of physical isolation techniques also is an 
option because it keeps critical information off the network and puts data on systems that 
feature restricted access and controls in place. 

Educating your teams about the options and early planning and testing is key to having a 
successful quantum-safe transition experience.
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When all of the data, application, and cryptographic key and algorithm information is collected 
and recorded and a priority list established, the implementation phase can start. A sample 
cryptographic inventory sheet is shown in Figure 4-8. 

Figure 4-8   Sample cryptographic inventory sheet

Based on the discovered items, the applications (or infrastructure components) must move to 
quantum-safe encryption if they are not quantum-safe (AES 256 is quantum-safe). 

An example of a non-quantum-safe condition is an application that signs data with RSA. To 
make it quantum-safe, a dual signature scheme is used following NIST recommendations. 

A dual signature consists of two (or more) signatures on a common message. The verification 
of the dual signature requires all of the component signatures to be successfully verified. 

In a dual signature, one signature is generated with a NIST-approved signature scheme as 
specified in FIPS 186, while another signatures can be generated by using a different 
algorithm. 

Dual signatures can be accommodated by current standards in “FIPS mode,” as defined in 
FIPS 140, if at least one of the component methods is a correctly implemented, 
NIST-approved signature algorithm. It is up to the application to specify how to parse 
signatures and verify them separately. 

For more information, see the following resources:

� This NIST post-quantum cryptography (PQC) web page 
� This French National Cybersecurity Agency (ANSSI) web page

Some technical environment upgrades or modifications might be required to support 
quantum-safe cryptography. For more information, see 4.1, “IBM Z cryptographic components 
overview” on page 48, and “Ensuring the environment is ready” on page 101.

4.2.5  Where to find help at IBM

IBM Systems Lab Services offers a quantum-safe assessment, which is a useful way to 
quickly understand how your company uses IBM Z cryptographic features and to inventory 
the cryptography in use today to maximize quantum-safe capabilities of your IBM Z 
environment. 

The assessment analyzes current best practices and provides a practical roadmap of actions 
to strengthen your quantum-safe posture. 

For more information, email us at mailto:ibmsls@ibm.com. 
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4.3  Best practices, mitigation options, and tools

This section provides information about how to use security best practices to build a secure 
z/OS cryptographic environment. It also includes some mitigation options that you can use 
along with an introduction to the key management tools, which must be considered during 
your quantum-safe journey. 

4.3.1  ICSF best practices

Implementing a secured cryptographic environment on z/OS is the foundation for building a 
strong quantum-safe cryptographic environment. The following sections describe best 
practices for ICSF.

ICSF configuration
ICSF more likely is the repository for all of your keys. Therefore, you must ensure it is 
configured for the maximum level of security for your encrypted data. We suggest configuring 
ICSF by using the following settings:

� No compatibility/coexistence mode

Compatibility mode was introduced to run applications written with Programmed 
Cryptographic Facility (PCF), ICSF ancestor, without reassembling the application. 
Because these applications likely use weak non-quantum-safe algorithm, they must be 
converted to ICSF and use quantum-safe algorithm.

If you still use AMS REPRO encryption (which requires compatibility mode), you must use 
other means to encrypt your data. IDCAMS ENCIPHER/DECIPHER works with weak 
56-bit DES key (no Triple DES support).

Also, changing the master keys in compatibility mode requires an IPL of the system.

Verify that the parameter COMPAT(YES) or COMPAT(COEXIST) is not specified in 
CSFPRMxx. The default is COMPAT(NO).

� No special secure mode

When special secure mode (SSM) is enabled, ICSF enables the generation or entry of 
clear keys, which lowers the security of the system. Clear keys usage should not be 
allowed.

Verify that the parameter SSM(YES) is not specified in CSFPRMxx. The default is 
SSM(NO). SSM can also be enable by a CSF.SSM.ENABLE.SAF profile in the XFACILIT 
resource class. Ensure it is not defined.

� Allocation of the xKDS

The xKDS data sets that are managed by ICSF more likely contain all of your keys. You 
must ensure that the initial allocation of these data sets allows growth.

To support quantum-safe keys, the xKDS must be in KDSRL format (see 
SYS1.SAMPLIB(CSFCDKS) and SYS1.SAMPLIB(CSFPKDS) as provided with ICSF 
HCR77D2 (z/OS 2.5).

The CKDS, PKDS contains one initialization record with the values of the current master 
keys verification patterns (MKVPs) for the type of keys that are stored in the keystore (AES 
and DES MKVPs for the CKDS, ECC, and RSA MKVPs for the PKDS).

Then, each VSAM record contains one key.
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The default found in the SYS1.SAMPLIB allocates a CKDS with 200 keys in the primary 
extent and 100 in each secondary extent. It also allocates a PKDS with 100 keys in the 
primary extent and 50 in each secondary extent. 

When allocating your CKDS, consider your number of keys and the growth that is 
expected from a data encryption perspective. This growth must include key rotation in the 
coming years and factor how long you must keep old keys “alive” in your CKDS to access 
old data from backups you must keep for regulatory purposes.

An installation that includes 100 keys in their CKDS, an application encryption requirement 
growth of 10% per year, rotates their operational keys every year, and a 10-year data 
retention period must be prepared to store more than 500 keys. 

Taking a large margin and over-allocating the CKDS to 1000 records in the primary extend 
uses only 10 tracks total (VSAM DATA + INDEX).

ICSF and z/OS security best practices
These z/OS security best practices aid in enhancing the protections across the z/OS 
cryptographic stack. Locking down the z/OS cryptographic stack enables you to realize the 
following benefits:

� Reduce the attack surface of your z/OS environment
� Enable routine security hygiene practices
� Use new capabilities and features
� Meet regulatory compliance requirement

Key label naming conventions
Cryptographic keys that are stored in the ICSF key data sets can be referenced by their key 
label. A key label can be up to 64 characters and consist of alphanumeric characters, national 
characters (#, $,@), or a period. When determining a key label name, consider the following 
factors:

� LPAR that is associated with the key
� Type of data that is encrypted
� Owner that is associated with the key
� Date that the key was created
� Application that uses the key
� A sequence number for the key

Consider the following key label example:

SYS1.DB2.ENCKEY.202204.0001

Protecting cryptographic keys and ICSF services
Access to CCA cryptographic keys is controlled through the CSFKEYS general resource 
class. When a key is used in an application, ICSF checks for a discrete CSFKEYS profile that 
matches the key’s label. 

If a covering profile (discrete or generic) exists, access to the key is granted based on 
whether the user or group has READ access. By default, the CSFKEYS class grants access 
to the key if no profile is in place. 

Ensure that the CSFKEYS class is ACTIVE and RACLISTed and a backstop profile exists; for 
example, ‘*’ or ‘**’ with UACC(NONE).

Access to PKCS #11 tokens is controlled through the CRYPTOZ general resource class. By 
default, the CRYPTOZ class does not grant access to the PKCS #11 token if no covering 
profile exists. 
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Ensure that the CRYPTOZ class is ACTIVE and RACLISTed. Define USER.* and SO.* 
backstop profiles with UACC(NONE). 

For more information about protecting PKCS #11 tokens with the CRYPTOZ class and the 
USER and SO (Security Officer) rules, see z/OS ICSF Writing PKCS #11 Applications, 
SC14-7510.

Access to ICSF callable services is controlled through the CSFSERV general resource class. 
When an ICSF service is called, ICSF checks for a discrete CSFSERV profile that matches 
the service name. By default, access to most ICSF services is granted if no covering profile 
exists. 

Also, ensure that the CSFSERV class is ACTIVE and RACLISTed. Define a backstop profile; 
for example, ‘*’ or ‘**’ with UACC(NONE).

Key lifecycle and key usage auditing
ICSF instances can be configured to audit the lifecycle of keys as they transition through the 
system. Keys can be audited from the time of their initial generation until their eventual 
deletion. Key lifecycle audit data is written as SMF Type 82 subtype 40, 41, and 42 records.

ICSF key lifecycle auditing includes the following options:

� AUDITKEYLIFECKDS: In the CKDS
� AUDITKEYLIFEPKDS: In the PKDS
� AUDITKEYLIFETKDS: In the TKDS

Key Lifecycle auditing can be enabled in the ICSF installation options data set or dynamically 
by using the SETICSF command.

ICSF instances can be configured to audit key usage. Key usage data can be used to 
determine which key was used, who used the key, and when the key was used. Key usage 
audit data is written as SMF Type 82 subtype 44, 45, 46, and 47 records.

ICSF key usage auditing includes the following options:

� AUDITKEYUSGCKDS: CCA symmetric tokens
� AUDITKEYUSGPKDS: CCA asymmetric tokens
� AUDITPKCS11USG: EP11 keys

Key usage auditing can be enabled in the ICSF installation options data set or dynamically by 
using the SETICSF command.

For more information about ICSF key lifecycle and key usage auditing, see z/OS ICSF 
System Programmer’s Guide, SC14-7507.

SAF protecting the ICSF Key Data Sets
ICSF Key Data Sets contain the CCA and EP11 cryptographic keys that are used within ICSF 
callable services. Although use of the keys can be protected with the CSFKEYS and 
CRYPTOZ general resource classes, the Key Data Sets also must be SAF protected. 

Without sufficient SAF protections on all three ICSF Key Data Sets, the ICSF keys are at a 
greater risk of becoming compromised. Regardless of whether you use clear or secure keys, 
each of your ICSF Key Data Sets must include a DATASET profile with UACC(NONE).
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Backing up ICSF keys
It is important to adopt a routine schedule of backing up the ICSF keystores. Backing up the 
keystore is recoverable. By regularly backing up the DASD volumes that contain the key 
stores, the entire volume can be restored if the volume becomes corrupted. 

Also, create backups before and after major key management operations. For example, 
performing an unfamiliar key management operation, generating many new keys, or after a 
master key rotation. 

When creating your backup, consider whether you should have an online or offline backup. An 
online backup provides the quickest recovery from a corrupted keystore or deletion, but it is 
also susceptible to attack by a bad actor. 

An offline backup (for example to tape) safeguards a keystore from being compromised by 
malicious software with access to online devices. Although offline backups might not be as up 
to date, they are less likely to be compromised.

If you using or plan to implement z/OS data set encryption, we suggest that you deploy a 
robust key management solution, especially as the number of keys to manage increases. 

For more information about calculating the number of encryption keys you might need for your 
environment, see this IBM Support publication.

4.3.2  Mitigation options

z/OS includes many features and functions that directly provide quantum-safe encryption for 
your data when at-rest or when a quantum-safe digital signature is used. The use of 
quantum-safe encryption algorithm for data-at-rest can provide the following mitigation 
options if the data remains encrypted while in transit:

� z/OS data set encryption

When implemented, z/OS data set encryption provides a high level of protection for your 
sensitive data when stored in z/OS data sets (extended format sequential data sets, 
extended format VSAM data sets, and basic and large nonextended format sequential 
data sets). 

z/OS data set encryption is based on AES-XTS block cipher mode with keys of 256 bits 
strength; therefore, it is considered quantum-safe.

Also, z/OS data set encryption does not require application changes when it is 
implemented; therefore, it ensures a short path to quantum-safe encryption.

� JES2 spool encryption

Because JES2 spool encryption is based on the same technology as z/OS data set 
encryption, the same level of protection to your data is provided during and after job 
execution. 

This option is another a short path to quantum-safe encryption.

� Digital signature and SMF

It is important to protect your data and the data of your clients or Business Partners, but it 
is also important to ensure that audit trails are not tampered. SMF digital signature 
provides an easy way to digitally sign the SMF records. 

When written to the log stream, the SMF records are hashed and SMF periodically signs 
the hash by using a private key.
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When reading the records, the utility program IFASMFDP verifies that the records were 
not corrupted or tampered. 

The alternative signature algorithm introduced the use of Dilithium digital signature with 
RSA or ECDSA, which makes SMF digital signing quantum-safe. This support requires an 
IBM z15 or IBM z16 environment for the entire sysplex.

4.3.3  Key management tools

The use of a quantum-safe cryptographic algorithm is only a first step. Correctly managing 
the keys that are used by these cryptographic algorithms also is important to ensure they are 
safely stored and transported and maintain compliance.

Trusted Key Entry
TKE is an integrated solution that manages cryptographic keys, such as master keys and 
initial key encrypting keys (KEKs) in a secure environment. The TKE Workstation enables 
basic local and remote key management. It is an optional hardware feature of IBM Z that 
provides a management tool for IBM Z host cryptographic coprocessors. 

The TKE feature contains a combination of hardware, firmware, and software. For more 
information, see this IBM Z and LinuxONE Content Solutions web page.

In a quantum-safe environment, it is paramount that all master keys in the xKDS are safely 
managed and stored. Master keys should never be exposed in the clear or wrapped with 
non-quantum-safe keys in a virtual safe.

With TKE, all the keys are generated in a cryptographic adapter coprocessor in the 
workstation and are never accessible in the clear. Even if optional, we recommend the use of 
TKE with smart card readers and smart cards to store and backup the keys. This 
configuration ensures the highest level of security and compliance.

With IBM z16 and TKE v10.0, a CRYSTALS-Kyber handshake occurs between the TKE 
Workstation cryptographic adapter and the target Crypto Express HSM when CCA master 
key parts are loaded into the target.

IBM Enterprise Key Management Foundation 
Enterprise Key Management Foundation (EKMF) is a flexible and highly secure key 
management system for the enterprise. It provides centralized key management on IBM Z 
and distributed platforms for streamlined, efficient, and secure key and certificate 
management operations. 

EKMF consists of an independent workstation (with IBM 4767 cryptographic coprocessors), 
and software that ensures a high security environment. For more information, see the IBM 
EKMF web page.

Note: Crypto Express8S and Crypto Express7S features that include quantum-safe 
capabilities that are enabled cannot be in the same TKE domain group as those features 
without quantum-safe capabilities enabled.
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All keys and certificates are stored in a central repository with metadata, such as activation 
dates and usage. By storing all key material in a central repository, backup is easily achieved 
by including the database in database backup procedures. This feature facilitates easy 
recovery if keys or certificates are lost.

You can transition to the EKMF Workstation at any time during your quantum-safe encryption 
journey. The EKMF Key Remote Store Viewer and Importer is available for that purpose.

The EKMF Workstation supports CRYSTALS-Dilithium (see Figure 4-9). 

Figure 4-9   EKMF Workstation CRYSTALS-Dilithium support
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Chapter 5. Creating a cryptographic 
inventory

Before transitioning to quantum-safe algorithms, it is important to create a cryptographic 
inventory that covers all aspects of cryptography in your enterprise. This process includes 
classifying the data to help you identify where your sensitive data is stored inside and outside 
the IBM Z environment. 

The cryptographic inventory also lists the certificates, encryption protocols, algorithms, and 
key lengths that are used and indicates those that are weakened by quantum computers. For 
more information about for an approach for creating a cryptographic inventory, see 
“Establishing a cryptographic inventory” on page 58.

This chapter shows you how to configure, run, and interpret the results for each of the 
cryptographic inventory creation tools and includes the following topics:

� 5.1, “Collection tools overview” on page 72
� 5.2, “Using ICSF cryptographic usage tracking” on page 73
� 5.3, “Using IBM Application Discovery and Delivery Intelligence” on page 77
� 5.4, “Using IBM Crypto Analytics Tool” on page 82
� 5.5, “Using IBM z/OS Encryption Readiness Technology” on page 89
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5.1  Collection tools overview

IBM provides several tools that can aid in the cryptographic discovery process and developing 
a cryptographic inventory for your IBM Z environment. Each tool provides unique information 
for creating a cryptographic inventory: 

� IBM z/OS Integrated Cryptographic Service Facility (ICSF) cryptographic usage tracking 
records are written as SMF records aggregating usage of cryptographic engines, 
cryptographic services, and cryptographic algorithms. 

� IBM Application Discovery and Delivery Intelligence (ADDI) analyzes COBOL application 
files that capture valuable metadata and dependencies by identifying important ICSF 
parameters for crypto algorithms. 

� IBM Crypto Analytics Tool (CAT) creates snapshots of the z/OS environment by extracting 
security and cryptographic information that is based on defined policies. 

� IBM z/OS Encryption Readiness Technology (zERT) collects and reports the 
cryptographic security attributes of IPv4 and IPv6 application traffic that is protected by 
using the TLS/SSL, SSH, and IPsec cryptographic network security protocols.

After the information is collected, perform a gap analysis to determine whether business, 
compliance, and audit requirements are being met. The gap analysis aids you in prioritizing 
updates for your environment. 

For more information about a process for making use of the various tools to identify the 
cryptographic algorithm, key length, and key label information that is related to COBOL 
programs, see Appendix A, “Finding cryptographic attributes” on page 121.
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5.2  Using ICSF cryptographic usage tracking

Beginning with ICSF FMID HCR77C1, ICSF instances can be configured to collect 
cryptographic usage data when crypto operations are performed by that ICSF instance. ICSF 
creates an SMF record type 82, subtype 31 to aggregate crypto usage statistics for each job 
or user that is associated with the crypto usage in a specified period. 

ICSF cryptographic usage tracking (see Figure 5-1) features the following options for 
collecting statistics: 

� ENG: Crypto Express adapters, CPACF, and software 
� SRV: ICSF callable services and UDXes 
� ALG: Cryptographic algorithms that are used within ICSF crypto operations 

Figure 5-1   ICSF cryptographic usage tracking overview

5.2.1  Configuring SMF for ICSF cryptographic usage tracking

Before ICSF can write SMF records for cryptographic usage, the SMFPRMxx member in 
PARMLIB (see Example 5-1 on page 74) must be updated to contain the following 
components: 

� The collection interval (INTVAL). 

Cryptographic usage tracking is synchronized to the SMF recording interval. In our 
example, ICSF records crypto usage every 5 minutes. 

� The synchronization value (SYNCVAL). 

Synchronizes the recording interval with the end of the hour of the TOD clock. In our 
example, ICSF starts recording crypto usage at the end of the hour. 

Note: It is essential to collect the records over a sufficient period, capturing as much 
workload and key usage as possible. This process helps build a more comprehensive 
cryptographic inventory.
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� The Cryptographic Usage Statistics subtype 31 for ICSF type 82 records (TYPE). 

Specifies the type of records to be recorded. In our example, SMF 82 subtype 31 is 
specified.

Example 5-1   SMFPRMxx member example 

DSNAME(SMF.MANA,SMF.MANB)            /* SMF Data sets        */
INTVAL(05)                           /* INTERVAL – 5 minutes */
SYNCVAL(00)                   /* SYNCHRONIZATION – 0 minutes */
SYS(TYPE(0,2,3,82(31),83,128:132)) /* ICSF SMF 82 subtype 31 */

5.2.2  Enabling cryptographic usage tracking within ICSF

Cryptographic usage tracking can be enabled within ICSF by using one of the following 
methods: 

� Through the installation options that are used for ICSF initialization

The CSFPRMxx member in PARMLIB must contain the STATS option. As shown in 
Example 5-2, all three STATS options are enabled. STATS(ALG) must be specified to 
enable algorithm usage tracking. STATSFILTERS(NOTKUSERID) can be optionally 
specified to exclude the task level user ID from the stats aggregation criteria. This option is 
intended for environments that features a high volume of operations that are running under 
task level user IDs, which reduces the number of SMF 82 Subtype 31 records written. 

Example 5-2   CSFPRMxx options

CKDSN(SYS1.CKDS)
PKDSN(SYS1.PKDS) 
TKDSN(SYS1.TKDS) 
STATS(ENG,SRV,ALG) 
STATSFILTERS(NOTKUSERID)

� Dynamically enable cryptographic usage tracking by using the SETICSF command (see 
Example 5-3). 

Example 5-3   SETICSF command

SETICSF OPT,STATS=(ALG)

The STATS setting can be verified by using the DISPLAY ICSF,OPT command (see 
Example 5-4).

Example 5-4   DISPLAY ICSF,OPT output 

D ICSF,OPT                                                         
 CSFM668I 12.44.17 ICSF OPTIONS 907                                 
   SYSNAME = SY1          ICSF LEVEL = HCR77D2                      
     LATEST ICSF CODE CHANGE = 02/21/22                             
     Refdate update interval in Days/HH.MM.SS = 005/00.00.00        
     Refdate update period   in Days/HH.MM.SS = 000/01.00.00        
     MASTERKCVLEN = display ALL digits                              
     AUDITKEYLIFECKDS: Audit CCA symmetric key lifecycle events     
       SYSNAME   LABEL    TOKEN                                     
       SY1        Yes      Yes                                      
     AUDITKEYLIFEPKDS: Audit CCA asymmetric key lifecycle events    
       SYSNAME   LABEL    TOKEN                                     
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       SY1        Yes      Yes                                      
     AUDITKEYLIFETKDS: Audit PKCS #11 key lifecycle events          
       SYSNAME   TOKOBJ   SESSOBJ                                   
       SY1        Yes      Yes                                      
     AUDITKEYUSGCKDS: Audit CCA symmetric key usage events          
       SYSNAME   LABEL    TOKEN     Interval Days/HH.MM.SS         
       SY1        No       No                 000/02.00.00         
     AUDITKEYUSGPKDS: Audit CCA asymmetric key usage events        
       SYSNAME   LABEL    TOKEN     Interval Days/HH.MM.SS         
       SY1        No       Yes                000/01.00.00         
     AUDITPKCS11USG: Audit PKCS #11 usage events                   
       SYSNAME   TOKOBJ   SESSOBJ   NOKEY  Interval Days/HH.MM.SS  
       SY1        No       No        Yes             000/05.00.00  
     STATS:                                                        
       SY1       ALG                                               
     COMPLIANCEWARN: Compliance warning events                     
       SY1       PCI-HSM 2016      Yes                             
     TRACKCLASSUSAGE:                                              
       SY1       NONE 

5.2.3  Formatting cryptographic usage statistics records

After ICSF cryptographic usage tracking is enabled for algorithms, run applications on the 
ICSF instances with tracking enabled. As a result, SMF cryptographic usage records are 
generated. 

ICSF provides formatters in SYS1.SAMPLIB (CSFSMFJ) that is the JCL that can be 
submitted to read SMF record type 82 and format them into a report. CSFSMFR is the REXX 
exec that is used to run the report against the SMF records. 

A formatted report of SMF record type 82, subtype 31 (hex ‘001F’) is shown in Example 5-5.

Example 5-5   Formatted report of SMF record type 

Type=82 Subtype=001F Crypto Usage Statistics                                  
Written periodically to record crypto usage counts                            
22 Feb 2022 15:12:27.73                                                       
   TME... 005389D5 DTE... 0122053F SID... SP21    SSI... 00000000 STY... 001F 
  INTVAL_START.. 02/22/2022 19:11:30.001815 
       INTVAL_END.... 02/22/2022 19:12:27.737573 
USERID_AS.....DATAOWN                                                     
   USERID_TK.....                                                             
   JOBID.........J0000055                                                    
   JOBNAME.......DATAOWN                                                    
   JOBNAME2......                                                             
   PLEXNAME......SYS1                                                       
   DOMAIN........0                                                           
   ENG...CARD...8C11/99EA6127...17                                           
   ENG...CPACF...150                                                         
   ALG...DES56......2                                                        
   ALG...AES128.....2                                                        
   ALG...RSA1024....1                                                        
   ALG...ECCBP192...1                                                        
   ALG...MD5........45                                                       
   ALG...RPMD160....15                                                       
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   ALG...SHA1....... 70                                          
   ALG...SHA3-224... 13                                          
   ALG...SHA3-256... 15                                          
   ALG...SHA3-384... 13                                          
   ALG...SHA3-512... 13                                          
   ALG...SHAKE128... 12                                          
   ALG...SHAKE256... 14                                          
   SRV...CSFKYT..... 2                                           
   SRV...CSFDSG..... 2                                           
   SRV...CSFOWH..... 264                                         
   SRV...CSFOWH1.... 3                                           
   SRV...CSFIQF..... 485                                         
   SRV...CSFIQF2.... 2                                           
**************************************************

Interpreting cryptographic usage statistics SMF records
After you formatted the cryptographic usage statistics SMF records, you can begin identifying 
algorithms that are used in applications that must be replaced. 

In Example 5-5 on page 75, algorithms DES56, AES128, and RSA1024 were used in crypto 
operations within the SMF recording interval. The SMF record lists the HOME address space 
ID or HOME address space job name, which are the job or task that started the cryptographic 
request. 

The SMF record also can list the SECONDARY address space job name (for example, the 
caller that made the program call or space switch to ICSF), the HOME address space user ID, 
and the task level user ID if available.

In Example 5-5 on page 75, the usage event is recorded for jobname DATAOWN. It occurred 
on system SYS1 and used crypto domain 0. 

DES56, RSA1024, AES128, SHA-1 are examples of weak algorithm candidates to prioritize 
for migration in your cryptographic inventory.
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5.3  Using IBM Application Discovery and Delivery Intelligence

IBM ADDI (see Figure 5-2) is an analytics platform for mainframe application modernization. 
It identifies and visualizes application dependencies and helps you quickly understand the 
impact of changes.

Figure 5-2   IBM ADDI flow

IBM Application Discovery Build Client is part of the IBM ADDI product suite. By using IBM 
Application Discovery Build Client to perform application crypto analysis, you can realize the 
following benefits: 

� Efficiently locate and identify where crypto is used in applications. 

� Capture valuable metadata and dependencies by identifying important ICSF parameters, 
such as “Rule Array”. 

� Store analysis results in a repository. 

� Plan migration and modernization efforts. 

� React quickly to potential security issues. 

Note: As of this writing, this support is available for COBOL applications only.
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5.3.1  Configuring IBM AD Build Client for ICSF crypto analysis

The following steps assume that the installation and configuration process is complete for 
ADDI. For more information about this process, see this IBM Documentation web page. 

Complete the following steps to configure and run IBM Build Client against your COBOL 
application:

1. Verify that the CRYPTO resolutions file (CAPIResolutions.json) is available in the 
\bin\release folder. This folder is where the AD Build Client executable 
(IBMApplicationDiscoveryBuildClient.exe) is stored. 

The following default path is used by the installation: 

C:\Program Files\IBM Application Discovery and Delivery Intelligence\IBM 
Application Discovery Build Client\bin\release 

2. Open the AD Build Client tool and create a project by clicking File → New → New Project 
(see Figure 5-3). 

Figure 5-3   Creating an IBM AD Build client 

3. Upload your COBOL application files to the project. You should downloaded these files 
from your mainframe. These COBOL files are scanned and analyzed for CALL 
statements, which are calls to ICSF cryptographic services. Complete the following steps:

a. Right-click zOS Cobol project folder → Add Files.

b. Locate the files on your local machine, select them, and click OK.

c. Repeat step 2 until all application files are added to the project.

Note: After the installation is complete, CAPIResolutions.json can be found in the 
\bin\release\Samples folder. Copy the .json file and place it in the bin\release folder. 
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d. After the project tree is populated, click File → Save Project (see Figure 5-4).

Figure 5-4   IBM AD add COBOL application window

4. Build the project by clicking Build → Build Project. Then, wait until the build process 
completes. Two files are generated that are related to ICSF crypto CALLs: 

– GenericAPI_<timestamp>.csv 
– GenericAPI_<timestamp).html 

5. Locate the Project path on disk and the change directory to: 

<Project path>/Reports/GenericAPI. 

For example: 

C:\IBM AD\Mainframe Projects\<your_project_name>\Reports\GenericAPI

The .csv file can be read as is or used as input by other tools as raw input. 

The .html file can be used as a report where the results can be filtered according to 
various criteria. 
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5.3.2  Interpreting IBM AD Build Client file results

In Figure 5-5, each CALL statement is uniquely identified by an ID in column A (OccurID); 
CALLs to ICSF CRYPTO service are in column B (APIName). The file where the CALL is 
stored is in column K (PathStr) at the line in column L (StartRow). 

The CALLs parameter values are in column G (ParamValue) and form one of more tuples in 
column H (GroupID), which correspond to the parameter positions column F (OrdinalPos) that 
is specified in the CAPIResolutions.json for the respective service. 

If no CALL statements to ICSF cryptographic services are found within the COBOL source 
files, an empty report is generated with the message:

GenericAPI query returned no results. 

Figure 5-5   IBM AD Build client results example 

When reviewing the results, pay attention to the APIMetadata and ParamValue columns. 
These columns provide insight into the type of algorithms that are used within the ICSF crypto 
service call. When building your cryptographic inventory, consider adding programs that 
contain ICSF calls with weak algorithms, such as DES.

5.3.3  Interpreting the CRYPTO CAPIResolutions.json resolutions file

The CRYPTO Resolutions (CAPIResolutions.json) file is a configuration file with the possible 
API calls, the parameters to capture, and information about ICSF calls. The ADDI build 
process uses this file to capture the data and can be extended or customized (see 
Example 5-6).

Example 5-6   CRYPTO Resolution file snippet example

{ "formatVersion":"1.0",  
…  
"GenericAPIs":  
[ 
    ...  
      { "GenericAPIName":"CSNBENC1,CSNEENC1",  
         "Description":"Encipher",  
         "Metadata":"DES",  
         "Metadata1": "Encryption/Decryption", 
         "Parameters": 
          [  
             { "Name":"RULE_ARRAY_COUNT",  
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                "Position":9,  
                "DefaultValues":"0" },  
             { "Name":"RULE_ARRAY",  
                "Position":10,  
                "DefaultValues":"INITIAL, TOKEN" }  
         ]  
      }  
    ... 
  ]  
 }

Where: 

� GenericAPIName: Name of the ICSF service (if that service has several names, you can 
initialize it with all of the values separated by comma) 

� Description: Short description of the service 

� Metadata: Algorithm used by that service 

� Metadata1: Category to which that service belongs 

� Parameters: Array of parameter objects where each object includes the following 
information:

– _Name: Parameter name (for example, for the Rule Array Parms column: 
RULE_ARRAY_COUNT and RULE_ARRAY names are used. For any Other Parms, PARAM<No> 
is used; for example, PARAM6, PARAM7, and PARAM8). 

– _Position: Position of that parameter for which we want to collect its values. 

– _DefaultValues: Comma-separated default parameter values, if applicable.

5.3.4  Extending the CRYPTO CAPIResolutions.json resolutions file

If you use an abstraction layer within the COBOL source files that is built on top of the 
standard cryptographic libraries (CCA and ICSF), the CAPIResolutions.json file must be 
edited and extended with the client interfaces (see Example 5-7). 

Example 5-7   Custom CAPIResolutions.json file

{  
     "GenericAPIName":"MYENCPHR",  
     "Description":"Custom Encipher",  
     "Metadata":"DES",  
     "Metadata1": "Custom Implementation of Encryption/Decryption",  
     "Parameters": 
      [  
         { "Name":"RULE_ARRAY_COUNT",  
            "Position":9,  
            "DefaultValues":"0" 
         },  
        { "Name":"RULE_ARRAY",  
           "Position":10,  
           "DefaultValues":"INITIAL, TOKEN"  
         }  
      ]  
 }
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5.4  Using IBM Crypto Analytics Tool

The IBM CAT provides a graphical interface that is used to search, display, and analyze data 
that is extracted from the different cryptographic components. The findings are presented in 
generated reports.

IBM CAT also can apply a set of policy rules that can be used to analyze the extracted data 
and flag whether the objects are compliant or noncompliant according to the policy rules 
(such as reporting non-quantum-safe keys).

5.4.1  IBM CAT overview

IBM CAT features the following components (see Figure 5-6):

� A data collection for z/OS that consists of load modules and compiled REXX execs to 
extract cryptographic and security-related information from z/OS systems. The extracted 
data is loaded into the IBM Crypto Analytics Tool DB2® database and provides 
“snapshots”.

� The Crypto Analytics Tool client is a workstation program that accesses the Crypto 
Analytics Tool database by using a JDBC connection to generate the reports.

Figure 5-6   CAT architectural overview
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5.4.2  Reported elements

Whenever you are running the z/OS data collection, the Db2 tables are populated with the 
results of the data collection, called snapshots. The following elements are reported by CAT in 
the snapshots:

� ICSF configuration

The ICSF configuration report provides basic information about the ICSF status at the time 
of the snapshot (sysplex mode, initialization status, CKDS format, and so on). The report 
also provides the status of runtime options (such as special secure mode and PCF 
coexistence), the ICSF policies, exit routines, and UDX services.

� Protected verbs and utilities

The protected verbs and utilities report lists all the ICSF services and extracts from RACF 
the profiles that are protecting these services along with the access list to the profiles.

� Crypto Express

This report provides a list of adapters that are assigned to the LPAR where the snapshot 
was taken, along with the status of the master keys. The report also provides the access 
points (ACPs) setup.

� Key data sets (xKDS)

The Key data sets report provides the name of the xKDS along with the status of their 
RACF protection. It also includes the Masters Keys verification patterns.

� Keys

For each type of key (DES, RSA, AES, and so), this report lists all the keys (with a search 
option) and their type, size, metadata, and so on. For each key, their RACF protection 
profiles can be displayed along with the options for the ICSF segment, such as 
SYMCPACFWRAP.

� RACF

The RACF report provides the list of all the RACF profiles in the classes that are related to 
cryptography, such as CRYPTOZ and CSFSERV. The report also provides the list of users 
and groups with access to these profiles, along with the certificates and key rings that are 
present in RACF.

5.4.3  Monitoring functions

CAT provides the following monitoring functions:

� Queries

In CAT Monitor, predefined queries can be performed. Two types of queries are available: 
Queries that compare two selected snapshots, and queries that generate a report for a 
selected snapshot. 

For example, by using the comparison function, the comparison report highlights the new 
keys that are found in the keystore if you compare two different snapshots after a key 
generation event.

� Policy check

With the policy check, set of policy rules can be specified that can be used to analyze the 
extracted data and flag whether the objects are compliant or noncompliant according to 
the policy rules. The set of policy rules can be tailored according to your own policy.
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5.4.4  Crypto Analytics Tool use case

In this use case, we see how you can use CAT to generate a policy report to identify 
non-Quantum-safe keys in your ICSF keystore. For example, analyzing our AES keys that are 
stored in the ICSF CKDS and report any anomaly, such as a weaker AES 128 key.

For this example, it is assumed that the CAT z/OS data collection component is installed and 
that the data collection is run at a regular interval.

The CAT Monitor was installed on a workstation, the JDBC license was copied into the 
<CATMonitor>\configuration\license directory, and the Db2 connection information is 
provided.

First, we activate the default policy, verify the content of the policy for AES keys and then, 
apply it to our AES 256 keys.

5.4.5  Activating the policy

We enable the built-in Policy. On the workstation where CAT is installed by selecting 
Window → Preferences.

By default, the built-in policy is not activated. To activate it, select the policy and click Set 
Active and then, Apply (see Figure 5-7).

Figure 5-7   CAT Policy Activation
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5.4.6  Checking the policy

To verify the content of the policy, select the policy and then, click Edit.

The policy editor is displayed (see Figure 5-8), which includes the name of the policy, a 
description, and a tab for each of the cryptographic elements where a policy can be applied.

Figure 5-8   CAT Policy Editor

If we select the AES Keys tab, we can see that the default policy reports any AES128 key that 
is created after 2004-01-01, any AES192 key created after 2011-01-01, and so on.
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As shown in Figure 5-9, the policy also reports any keys with identical Key Check Value 
(KCV); that is, those key labels have the same key value.

Figure 5-9   AES Key Length Policies

Exit the Preference dialog by clicking Cancel twice.
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5.4.7  Applying the policy to a snapshot

When back in CAT main window, select and expand a snapshot in the Systems Explorer 
frame.

In the ICSF section, the types of keys that are present in the key data sets are listed. As 
shown in Figure 5-10 on page 87, we right-clicked AES Keys and then, selected Policy → 
Verify AES Keys.

Figure 5-10   Running the AES Key Policy

The Policy Check report is displayed. In Figure 5-11, the Policy Check Report is highlighting 
that some noncompliant AES keys were found in our keystore.

Figure 5-11   CAT Monitor AES Policy Check Report
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By clicking the highlighted policy exception, the list of keys (see Figure 5-12) shows that only 
one was found as not compliant in the policy check report. When selecting each key, details 
about the key and the associated metadata are displayed.

Figure 5-12   AES non-policy-compliant keys display
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5.5  Using IBM z/OS Encryption Readiness Technology

IBM zERT is a communications server feature that provides information about the 
cryptographic network protection state of TCP/IP and Enterprise Extender connections that 
end on a z/OS system. It also reports their usage in SMF records. 

With IBM zERT Network Analyzer (see Figure 5-13), a web-based GUI runs under z/OSMF. 
z/OS network security administrators can analyze and report on the data that is reported in 
zERT Summary records (SMF type 119 subtype 12). 

Figure 5-13   zERT Process

With z/OS 2.5 and zERT Policy Enforcement, you can define required network security policy, 
including the encryption algorithm in use and then, direct the TCP/IP stack to take specific 
actions for connections that do not meet that defined policy through the policy agent 
(PAGENT).

5.5.1  Enabling zERT for zERT Network Analyzer

To generate the zERT summary records, the following parameters are required in the TCP/IP 
configuration profile: 

� ZERT AGGREGRATION in the GLOBALCONFIG section 
� TYPE119 ZERTSUMMARY in the SMFCONFIG section 

Also, the z/OS SMF configuration parmlib member should enable the collection of the SMF 
type 119 records. 

Note: At least Db2 for z/OS V11 is required as the database repository for IBM zERT 
Network Analyzer.
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5.5.2  Using IBM zERT Network Analyzer

In this section, we demonstrate how zERT network analyzer can be used during the 
cryptographic inventory step to provide encryption algorithms data for z/OS Communications 
Server.

Configuration tasks overview 
Before IBM zERT Network Analyzer is used, the following configuration tasks are required: 

� Authorize the user IDs to use the IBM zERT Network Analyzer (see 
SYS1.SAMPLIB(IZUNASEC). 

� Work with your Db2 for z/OS database administrators to create the Db2 database objects 
and connect IBM zERT Network Analyzer to the Db2 database.

Populating IBM zERT Network Analyzer database 
To perform this task, you need cataloged SMF dump data sets with the SMF record type 119 
and subtype 12, zERT aggregation records. The z/OSMF task (usually user IZUSVR) must be 
authorized to read the SMF dump data sets.

Complete the following steps:

1. In the main IBM zERT Network Analyzer page, select Data Management → Import SMF 
Data → Add data set. Add all the required SMF dumps data sets. 

2. Select all of the data sets that you want to import in the database and then, click Import 
Selected. Then, confirm that you want to import the selected data sets (see Figure 5-14). 

Figure 5-14   IBM zERT Network Analyzer Import SMD Data 
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The import operation is asynchronous, and the completion of the import can be checked in 
the Data Management History window by reviewing the Status column (see Figure 5-15). The 
task can be selected to expand to a detailed view of the import operation (number of records 
added, duplicate, and ignored). 

Figure 5-15   IBM zERT Network Analyzer SMF import details 

Building your first query 
Now that the SMF data is imported into the Db2 database, you can build your first query. 
Complete the following steps:

1. In the main IBM zERT Network Analyzer page (see Figure 5-16), select Queries → New 
query. Here, you must provide a query name and (optionally) a description for the query. 

Figure 5-16   IBM zERT Network Analyzer creating a new query 

By default, the query retrieves all available SMF records, and reports on all of the data that 
is available in the Db2 database. 
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However, to limit the output of the query and select more valuable information, you can 
add a scope filter. This filter can limit the output to a specific data range (such a, the last 
30 days), the sysplex/systems/TCP/IP stack, the TCP or Enterprise Extender IP, ports, 
and client IP (see Figure 5-17). 

Figure 5-17   IBM zERT Network Analyzer query scope filter 

You can limit the output of the query by selecting Security Filters. In the Security filter 
window, you can limit the output of the query to specific security traffic (unprotected, 
IPsec, TLS, and SSH). Within a security traffic, such as TLS, you can limit the output to 
specific algorithms (see Figure 5-18). 

Figure 5-18   IBM zERT Network Analyzer Security session filters

2. After your query definition is complete, click Save and run query. After confirmation, the 
query runs and the result is available in the Report window. 
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Viewing the query result 
The query results are available in the Report window (see Figure 5-19). 

Figure 5-19   IBM zERT Network Analyzer query result

The query result features one summary line, with the Sysplex, System, Stack, and Server IP 
along with the ports, jobname, and summary information about the type of session that was 
reported (unprotected, IPsec, SSH, and TLS). 

You can expand the results, and get more information by clicking the query result line. 

IBM zERT Network Analyzer shows the list of Clients IP along with another summary of the 
sessions. You can get more information about the sessions for a specific client or all the 
clients by selecting the IP addresses that you want to analyze and then, clicking View 
security session details (see Figure 5-20). 

Figure 5-20   IBM zERT Network Analyzer client details 

The report displays (see Figure 5-21). For each client IP selected, the details about the 
security are provided (Protocol version, Key Exchange Algorithm, and so on). 

Figure 5-21   IBM zERT Network Analyzer security session details 
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All the query results are exportable, and can be used in spreadsheet by clicking Export to 
CSV. 

Creating your own data-in-transit cryptographic inventory 
From the previous example, we discovered that we can create specific targeted reports about 
specific types of security sessions and algorithms by using the IBM zERT Network Analyzer. 

Then, you can build a cryptographic inventory for your data-in-transit, with specific attributes, 
such as the clients/servers you are targeting, the protocols or cryptographic algorithms (which 
is useful to prepare a transition for specific applications/client-servers in the enterprise). 

5.5.3  Monitoring data in-transit by using zERT

With z/OS 2.5, a feature called zERT Enforcement Policy was introduced. With this feature, 
you can now define a policy with filters that is based on addresses, ports, jobname, 
encryption algorithm, and ciphers. Then, you can take actions if the connection is not “in 
policy”. The actions can be logging only (SMF, syslogd, and console) or resetting the TCP/IP 
connection. The policy is enforced by the Policy Agent address space (PAGENT). 

Creating a policy
To create a zERT Enforcement Policy, it is recommended to use, the z/OSMF Network 
Configuration assistant (see Figure 5-22) as is done with the others policy agent-based 
policies (such as AT/TLS and IPsec). 

Figure 5-22   Main page of z/OS Configuration Assistant 

In the policy, you can define multiple criteria that the connection needs match to trigger the 
policy. Then, in the actions, you define what occurs if such connection is established. 

For example, you can reset a nonsecure connection and disconnect the client so that no 
information transits in this nonsecure connection. 
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In our environment, TN3270clear connection requests coming from IP address 10.0.0.111 
are not permitted (see Figure 5-23). Therefore, the client immediately disconnects after 
reporting the information in the z/OS log. 

Figure 5-23   zERT Rule information

After activating the policy through the policy agent, we can see in the PAGENT log (refer to 
Example 5-8) that message EZZ8771I is issued. We also see that the TN3270 client with an 
IP address of 10.0.0.111 starts a nonsecure connection, which is immediately reported and 
disconnected through a reset of the connection (message EZZ8562I).

Example 5-8   PAGENT Log

EZZ8771I PAGENT CONFIG POLICY PROCESSING COMPLETE FOR TCPIP : TTLS                
EZZ8771I PAGENT CONFIG POLICY PROCESSING COMPLETE FOR TCPIP : ZERT                
EZD1289I TCPIP ICSF SERVICES ARE CURRENTLY AVAILABLE FOR AT-TLS GROUP             
AZFGroupAction1                                                                   
EZZ6035I TN3270 DEBUG CONN   DETAIL 373                                           
  IP..PORT: 10.0.0.111..53854                                                     
  CONN: 000056FA  LU: SYSZTCP8 MOD: EZBTTRCV                                      
  RCODE: 1001-01  Client disconnected from the connection.                        
  PARM1: 00000000 PARM2: 00000000 PARM3: 00000000                                 
EZZ6034I TN3270 CONN 000056FA LU SYSZTCP8 SESS DROP  CLNTDISC 374                 
  IP..PORT: 10.0.0.111..53854                                                     
IKT100I USERID           CANCELED DUE TO UNCONDITIONAL LOGOFF                     
IKT122I IPADDR..PORT 10.0.0.111..53854                                            
EZZ6034I TN3270 CONN 000056FA LU SYSZTCP8 CONN DROP  CLNTDISC 376                 
  IP..PORT: 10.0.0.111..53854                                                     
EZZ6034I TN3270 CONN 0000571C LU **N/A**  ACCEPTED      23 378                    
  IP..PORT: 10.0.0.111..55623                                                     
EZZ8562I CONN RESET BY ZERT POLICY 379                                            
EZZ8552I STACK= TCPIP CONNID= 0000571C CONNDIR= INBOUND                           
EZZ8553I LOCALIPADDR= 10.0.0.216 LOCALPORT= 23                                    
EZZ8554I REMOTEIPADDR= 10.0.0.111 REMOTEPORT= 55623                               
EZZ8555I TRANSPROTO= TCP JOBNAME= TN3270 USERID= TCPIP                            
EZZ8556I SECPROTO= NONE SECPROTOVERSION= N/A                                      
EZZ8560I RULE= TN3270clear                                                        
EZZ8561I ACTION= Reset__Console 
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This example shows a simple policy, but during your quantum-safe journey, you can define 
rules that are based on these encryption algorithms to prevent (or report real-time) 
connections that use non-quantum-safe encryption algorithms.
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Chapter 6. Deploying quantum-safe 
capabilities

Now that your cryptographic inventory is created (as discussed in Chapter 5, “Creating a 
cryptographic inventory” on page 71), the preparation and planning can begin for the 
replacement of weak symmetric keys and public key algorithms. The algorithms and protocols 
at risk are discussed in “Cryptographic vulnerabilities possible with quantum computers” on 
page 9. 

Adopting and implementing agreed upon quantum-safe standards, algorithms, and protocols 
in cryptographic systems helps protect against quantum computer and conventional 
computer attacks. 

This chapter includes the following topics:

� 6.1, “Quantum-safe algorithm artifacts” on page 98
� 6.2, “Converting your PKDS to KDSRL format” on page 99
� 6.3, “Ensuring the environment is ready” on page 101
� 6.4, “Quantum-safe key generation” on page 102
� 6.5, “Quantum-safe encryption” on page 105
� 6.6, “Quantum-safe digital signatures” on page 107
� 6.7, “Quantum-safe hybrid key exchange” on page 113
� 6.8, “Quantum-safe hashing” on page 117
� 6.9, “Validating your quantum-safe transition” on page 118
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6.1  Quantum-safe algorithm artifacts 

As you transition your cryptographic infrastructure to quantum-safe algorithms, it is important 
to understand some of the differences in artifact sizes between quantum-safe algorithms and 
traditional public key cryptography. It also is important to understand the supported 
quantum-safe algorithm object identifiers. 

Quantum-safe algorithm (QSA) keys and signatures are much larger and might require 
changes in your environment. CCA QSA, RSA, and Elliptic Curve Cryptography (ECC) keys 
are compared in Table 6-1. The token size does not include other sections (such as private 
key name). The PKCS #11 key objects and signatures are of comparable size to the CCA key 
tokens.

Table 6-1   CCA public key token and signature sizes

The supported quantum-safe algorithm object identifiers (OIDs) on IBM z15 and IBM z16 with 
Crypto Express7S and Crypto Express8S features are listed in Table 6-2.

Table 6-2   Supported quantum-safe algorithm object identifiers

For more information about the supported quantum-safe OIDs, see ICSF Application 
Programmer's Guide, SC14-7508. 

For more information about each quantum-safe algorithm, see the following web pages:

� CRYSTALS-Dilithium
� CRYSTALS-Kyber

Algorithm Public key token 
size (bytes)

Private key token size 
(bytes)

Signature size 
(bytes)

RSA CRT 4096 1104 2504 512

ECC Edwards 448 79 323 114

CRYSTALS-Dilithium 6,5 
Round 3

1984 6128 3293

CRYSTALS-Dilithium 8,7 
Round 3

2624 7632 4595

Algorithm Algorithm strength/versiona

a. Crypto Express7S features support CRYSTALS-Dilithium 6,5 Round 2 only

Object identifier

CRYSTALS-Dilithium CRYSTALS-Dilithium 6,5 Round 2 1.3.6.1.4.1.2.267.1.6.5

CRYSTALS-Dilithium 6,5 Round 3 1.3.6.1.4.1.2.267.7.6.5

CRYSTALS-Dilithium 8,7 Round 2 1.3.6.1.4.1.2.267.1.8.7

CRYSTALS-Dilithium 8,7 Round 3 1.3.6.1.4.1.2.267.7.8.7

CRYSTALS-Kyber CRYSTALS-Kyber 1024 Round 2 1.3.6.1.4.1.2.267.5.4.4
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6.2  Converting your PKDS to KDSRL format

If you plan to store CCA QSA key tokens in your ICSF Public Key Data Set (PKDS), you must 
be on ICSF FMID HCR77D2 and have a large common record format (KDSRL) PKDS. 
KDSRL format supports all asymmetric key tokens and metadata. It also allows key usage 
tracking, if configured. KDSRL format increases the logical record length (LRECL) of the 
PKDS 3800 to 32756. 

ICSF provides a utility to convert a KDSR format PKDS to KDSRL format by using the ICSF 
panes.

Complete the following steps to convert a PKDS to KDSRL format by using the ICSF panes:

1. On the ICSF Primary menu (see Example 6-1), select option 2, KDS MANAGEMENT and 
then, press Enter.

Example 6-1   ICSF Primary menu

HCR77D2  -------------- Integrated Cryptographic 
 System Name:  SY1                            Crypto Domain: 0                 
 Enter the number of the desired option.                                       
                                                                               
   1  COPROCESSOR MGMT -  Management of Cryptographic Coprocessors             
   2  KDS MANAGEMENT   -  Master key set or change, KDS Processing             
   3  OPSTAT           -  Installation options                                 
   4  ADMINCNTL        -  Administrative Control Functions                     
   5  UTILITY          -  ICSF Utilities                                       
   6  PPINIT           -  Pass Phrase Master Key/KDS Initialization            
   7  TKE              -  TKE PKA Direct Key Load                              
   8  KGUP             -  Key Generator Utility processes                      
   9  UDX MGMT         -  Management of User Defined Extensions                
                                                                               
      Licensed Materials - Property of IBM                                     
      5650-ZOS Copyright IBM Corp. 1989, 2021.                                 
      US Government Users Restricted Rights - Use, duplication or              
      disclosure restricted by GSA ADP Schedule Contract with IBM Corp.        
                                                                               
 Press ENTER to go to the selected option.                                     
 Press END   to exit to the previous menu.                                     
 OPTION ===>

2. On the Key Data Set Management pane (see Example 6-2), select option 2, PKDS 
MANAGEMENT and then, press Enter.

Example 6-2   ICSF key data set management

------------------------ ICSF - Key Data Set Management ------------
                                                                     
 Enter the number of the desired option.                             
                                                                     
   1  CKDS MANAGEMENT -  Perform Cryptographic Key Data Set (CKDS)   
                         functions including master key management   
   2  PKDS MANAGEMENT -  Perform Public Key Data Set (PKDS)          
                         functions including master key management   
   3  TKDS MANAGEMENT -  Perform PKCS #11 Token Data Set (TKDS)      
                         functions including master key management   
   4  SET MK          -  Set master keys                             
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 Press ENTER to go to the selected option.                           
 Press END   to exit to the previous menu.

3. On the PKDS Management pane (see Example 6-3), select option 6, COORDINATED 
PKDS CONVERSION and then, press Enter.

Example 6-3   PKDS Management

---------------------------- ICSF - PKDS Management --------------------------
                                                                               
 Enter the number of the desired option.                                       
                                                                               
   1  PKDS OPERATIONS   -  Initialize a PKDS, activate a different PKDS,       
                           (Refresh), or update the header of a PKDS and make  
                           it active                                           
   2  REENCIPHER PKDS   -  Reencipher the PKDS                                 
   3  CHANGE ASYM MK    -  Change an asymmetric master key and activate the    
                           reenciphered PKDS                                   
   4  COORDINATED PKDS REFRESH - Perform a coordinated PKDS refresh            
   5  COORDINATED PKDS CHANGE MK - Perform a coordinated PKDS change master key
   6  COORDINATED PKDS CONVERSION - Convert the PKDS to KDSR/L record format   
   7  PKDS KEY CHECK    - Check key tokens in the active PKDS for format errors
                                                                               
 Press ENTER to go to the selected option.                                     
 Press END   to exit to the previous menu. 

4. On the Coordinated KDS conversion pane (see Example 6-4), enter the new KDS name 
and then, press Enter.

Example 6-4   Coordinated KDS conversion

---------------------- ICSF - Coordinated KDS conversion -----------------
                                                                           
 To perform a coordinated KDS conversion, enter the KDS names below        
 and optionally select the rename option.                                  
                                                                           
     KDS Type ===> PKDS                                                    
                                                                           
   Active KDS ===> ‘SYS1.PKDS.KDSR’
                                                                           
      New KDS ===> ‘SYS1.PKDS.KDSRL’                                                       
                                                                           
           Rename Active to Archived and New to Active (Y/N) ===> N        
                                                                           
           Archived KDS ===>                                               
                                                                           
           Create a backup of the converted KDS (Y/N) ===> N               
                                                                           
           Backup KDS ===>                                                 
                                                                           
 Press ENTER to perform a coordinated KDS conversion.                      
 Press END to exit to the previous menu. 
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After converting your PKDS to KDSRL format, you can confirm the change by using the 
D ICSF,KDS command. The output is shown in Example 6-5.

Example 6-5   D ICSF, KDS output

SY1           d icsf,kds                                     
 SY1           CSFM668I 14.28.13 ICSF KDS 875                 
   CKDS  SYS1.CKDS.KDSR
     FORMAT=KDSR      COMM LVL=3  SYSPLEX=Y  MKVPs=DES AES    
     DES MKVP date=Unknown                                    
     AES MKVP date=Unknown                                    
   PKDS  SYS1.PKDS.KDSRL                            
     FORMAT=KDSRL     COMM LVL=3  SYSPLEX=Y  MKVPs=RSA ECC    
     RSA MKVP date=Unknown                                    
     ECC MKVP date=Unknown                                    
   TKDS  SYS1.TKDS.KDSRL
     FORMAT=KDSRL     COMM LVL=3  SYSPLEX=Y  MKVPs=P11        
     P11 MKVP date=Unknown

6.3  Ensuring the environment is ready

The examples in the subsequent sections assume that all the necessary hardware and 
software is installed. Review the information in this section before deploying the quantum-safe 
capabilities.

The following general prerequisites must be met:

� ICSF FMID HCR77D2 or later is installed with the latest service level
� z/OS 2.5 or later is installed
� Running on IBM z15 or later
� Crypto Express7S or later is installed and configured
� CPACF feature code 3863 is enabled

For the CCA examples, our environment featured the following components:

� z/OS 2.5 installed and running on an IBM z16.

� ICSF FMID HCR77D2 with the latest service level applied.

� The CKDS and PKDS are allocated and in the correct format:

– The CKDS is recommended to be in KDSRL format.

– The PKDS must be in KDSRL format. For more information, see “Converting your 
PKDS to KDSRL format” on page 99.

� Two Crypto Express8S (CEX8C) were installed and configured as CCA coprocessors (for 
more information, see IBM z16 Configuration Setup, SG24-8960). 

� Feature Code (FC) 3863 was enabled for CPACF use.

� The AES master key was set and active in each CEX8C (CCA coprocessor) and initialized 
in the CKDS header. The Master Key Verification Pattern must be the same across your 
environment.

If you are converting ciphertext that is encrypted with secure CCA DES keys, you must 
have the DES master key set and active in each CEX8C coprocessor and initialized in the 
CKDS header. The Master Key Verification Pattern must be the same across your 
environment.
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CCA CRYSTALS-Dilithium and CRYSTALS-Kyber key operations require that the ECC 
master key be set and active in each CEX8C coprocessor and initialized in the PKDS 
header. The Master Key Verification Pattern must be the same across your environment.

For the PKCS #11 examples, we made the following changes to our environment:

� The TKDS was allocated. A TKDS is not required if session objects are used.

� For secure key operations:

– Two Crypto Express8 (CEX8P) were installed and configured as Enterprise PKCS #11 
(EP11) coprocessor.

– The EP11 master key was set and active in each CEX8P and initialized in the TKDS 
header. The Master Key Verification Pattern must be the same across your 
environment. A TKE is required to set the EP11 master key.

For more information about allocating ICSF Key Data Sets and entering and activating ICSF 
master keys, see z/OS ICSF Administrator’s Guide, z/OS, SC14-7506.

For more information about the IBM Z cryptographic stack, see 4.1, “IBM Z cryptographic 
components overview” on page 48.

6.4  Quantum-safe key generation 

This section describes generating cover keys for AES 256, CRYSTALS-Dilithium, and 
CRYSTALS-Kyber algorithms by using ICSF services. 

AES 256, CRYSTALS-Dilithium, and CRYSTALS-Kyber are proven to be resistant to attacks 
from a powerful quantum computer. They also are ideal candidates when transitioning your 
application that is identified in your cryptographic inventory.

The PKCS #11 sample assumes that your environment is running with a specified ICSF 
TKDS. For more information about allocating and initializing a TKDS, see ICSF System’s 
Programmer’s Guide, SC14-7507.

6.4.1  Generating an AES 256-bit key by using ICSF CCA services

Generating a secure AES 256-bit CIPHER CCA key token can be done by using the Key 
Token Build2 (CSNBKTB2 and CSNEKTB2) and Key Generate2 (CSNBKGN2 and 
CSNEKGN2) ICSF services. 

To generate a CCA AES 256-bit key, complete the following steps:

1. Build a skeleton token by using CSNBKTB2 with the correct key usage and key 
management bits specified. Ensure key type CIPHER is specified.

2. Pass the created skeleton token from CSNBKTB2 to CSNBKGN2 and specify the AES 
and OP rules.

The secure AES 256-bit CCA key token is generated and can be written to the CKDS with the 
CKDS Key Record Create2 (CSNBKRC2 and CSNEKRC2) service.

For more information about a sample REXX program that showcases steps 1 and 2, see B.1, 
“CCA AES 256-bit key generation REXX sample” on page 134.

Note: PKCS #11 hybrid key-exchange can be done in hardware only.
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For more information about these services and parameters, see ICSF Application 
Programmer’s Guide, SC14-7508. 

6.4.2  Generating an AES 256-bit key by using ICSF PKCS #11 services

Generating a secure AES 256-bit PKCS #11 key object can be done by using the PKCS #11 
Generate Secret Key (CSFPGSK and CSFPGSK6) ICSF service.

To generate a secure PKCS #11 AES 256-bit key, complete the following steps:

1. Initialize a PKCS #11 token by using the PKCS #11 Token Record Create (CSFPTRC and 
CSFPTRC6) service.

2. Call the CSFPGSK service that passes the token handle that was created in step 1. 
Specify the CKA_CLASS (with a value of CKO_SECRET_KEY) and CKA_KEY_TYPE 
(with a value of CKK_AES) object attributes in the attribute list. 

For more information about contains a sample REXX program that showcases step 2, see 
B.2, “PKCS #11 AES 256-bit key generation REXX sample” on page 137.

For more information about key object attributes, see ICSF Writing PKCS #11 Applications 
guide, SC14-7510.

6.4.3  Generating CRYSTALS-Dilithium key by using ICSF CCA services 

Generating a secure CRYSTALS-Dilithium key pair can be done by using the PKA Key Token 
Build (CSNDPKB and CSNFPKB) and PKA Key Generate (CSNDPKG and CSNFPKG) ICSF 
services.

To generate a CRYSTALS-Dilithium key pair, complete the following steps:

1. Build a skeleton token by using CSNDPKB passing the ‘QSA-PAIR’ and ‘U-DIGSIG’ rules. 
In the Key Value Structure (KVS), specify the algorithm ID and algorithm parameters for 
CRYSTALS-Dilithium.

2. Pass the created skeleton token from CSNDPKB to CSNDPKG and specify the ‘MASTER’ 
rule.

The secure CRYSTALS-Dilithium key pair is generated and can be written to the PKDS with 
the PKDS Key Record Create (CSNDKRC and CSNFKRC) service if the PKDS is in KDSRL 
format. For more information, see 6.2, “Converting your PKDS to KDSRL format” on page 99.

The CRYSTALS-Dilithium public key optionally can be extracted from the private key token by 
using the PKA Public Key Extract (CSNDPKX and CSNFPKX) service.

For more information about a sample REXX program that showcases steps 1 and 2, see B.3, 
“CCA CRYSTALS-Dilithium key pair generation REXX sample” on page 139.

For more information about these services and parameters, see ICSF Application 
Programmer’s Guide, SC14-7508.
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6.4.4  Generating CRYSTALS-Dilithium key by using ICSF PKCS #11 services

Generating a secure PKCS #11 CRYSTALS-Dilithium key object can be done by using the 
PKCS #11 Generate Key Pair (CSFPGKP and CSFPGKP6) ICSF service.

To generate a secure PKCS #11 CRYSTALS-Dilithium key object, complete the following 
steps:

1. Initialize a PKCS #11 token by using the PKCS #11 Token Record Create (CSFPTRC and 
CSFPTRC6) service.

2. Call the CSFPGKP service that passes the token handle that was created from step 1. 
Specify the CKA_IBM_DILITHIUM_MODE object attribute with the DER encoded OID that 
corresponds to the CRYSTALS-Dilithium strength that is wanted in the public key attribute 
list. 

For more information about a sample REXX program that showcases step 2, see B.4, “PKCS 
#11 CRYSTALS-Dilithium key pair generation REXX sample” on page 142.

For more information about key object attributes, see ICSF Writing PKCS #11 Applications 
Guide, SC14-7510.

6.4.5  Generating CRYSTALS-Kyber key by using ICSF CCA services 

Generating a secure CRYSTALS-Kyber key pair can be done by using the PKA Key Token 
Build (CSNDPKB and CSNFPKB) and PKA Key Generate (CSNDPKG and CSNFPKG) ICSF 
services.

To generate a CRYSTALS-Kyber key pair, complete the following steps:

1. Build a skeleton token by using CSNDPKB passing the QSA-PAIR, U-KEYENC, and 
U-DATENC rules. In the Key Value Structure (KVS), specify the algorithm ID and algorithm 
parameter for CRYSTALS-Kyber.

2. Pass the created skeleton token from CSNDPKB to CSNDPKG and specify the MASTER 
rule.

The secure CRYSTALS-Kyber key pair is generated and can be written to the PKDS with the 
PKDS Key Record Create (CSNDKRC and CSNFKRC) service if the PKDS is in KDSRL 
format. For more information, see 1.2: Converting your PKDS to KDSRL format.

The CRYSTALS-Kyber public key optionally can be extracted from the private key token by 
using the PKA Public Key Extract (CSNDPKX and CSNFPKX) service.

For more information about a sample REXX program that showcases steps 1 and 2, see B.5, 
“CCA CRYSTALS-Kyber key pair generation REXX sample” on page 144.

For more information about these services and parameters, see ICSF Application 
Programmer’s Guide, SC14-7508.
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6.4.6  Generating CRYSTALS-Kyber key by using ICSF PKCS #11 services 

Generating a secure PKCS #11 CRYSTALS-Kyber key object can be done by using the 
PKCS #11 Generate Key Pair (CSFPGKP and CSFPGKP6) ICSF service.

To generate a secure PKCS #11 CRYSTALS-Kyber key object, complete the following steps:

1. Initialize a PKCS #11 token by using the PKCS #11 Token Record Create (CSFPTRC and 
CSFPTRC6) service.

2. Call the CSFPGKP service that passes the token handle that was created from step 1. 
Specify the CKA_IBM_KYBER_MODE object attribute with the DER encoded OID 
corresponding to the CRYSTALS-KYBER strength that is wanted in the public key attribute 
list. 

For more information about a sample REXX program that showcases step 2, see B.6, “PKCS 
#11 CRYSTALS-Kyber key pair generation REXX sample” on page 147. 

For more information about key object attributes, see ICSF Writing PKCS #11 Applications 
Guide, SC14-7510.

6.5  Quantum-safe encryption

Data must be encrypted with AES 256-bit keys to ensure its protection from quantum 
computers running Grover’s algorithm. For more information about the effect Grover’s 
algorithm has on symmetric key cryptography, see 1.3, “Impact of Shor’s and Grover’s 
algorithms” on page 7. 

The following options are available to protect ciphertext:

� Translate it by decrypting it by using the original key and then, encrypting it with an AES 
256-bit key. The clear text is visible only for a short time within the secure cryptographic 
coprocessor.

� Reencrypt the ciphertext by using an AES 256-bit key without decrypting it first.

� Decrypt it with Symmetric Key Decipher (CSNBSYD or CSNBSYD1 and CSNESYD or 
CSNESYD1) and reencrypt it with Symmetric Key Encipher (CSNBSYE or CSNBSYE1 
and CSNESYE or CSNESYE1). The clear text is visible only for a short time on the host 
system.

For more information about generating AES 256-bit keys, see 6.4.1, “Generating an AES 
256-bit key by using ICSF CCA services” on page 102.

For more information about the use of AES 256-bit keys to translate cipher text from a weaker 
key (such as DES) to AES 256-bit encryption (option 1 in the previous bulleted list), see 6.4.2, 
“Generating an AES 256-bit key by using ICSF PKCS #11 services” on page 103.
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6.5.1  Translating ciphertext to AES 256-bit encryption by using ICSF CCA 
services

Translating ciphertext from a weaker algorithm to AES 256-bit can be done by using the 
Cipher Text Translate2 (CSNBCTT2, CSNBCTT3, CSNECTT2, CSNECTT3) ICSF service.

To translate ciphertext to AES 256-bit encryption, complete the following steps:

1. Generate an AES 256-bit CIPHER key by using the ENCRYPT and C-XLATE key usage 
bits enabled. For more information, see B.1, “CCA AES 256-bit key generation REXX 
sample” on page 134.

2. Call the Cipher Text Translate2 service that passes the key that originally encrypted the 
ciphertext as the key_identifier_in and the new AES 256-bit key as the key_identifier_out.

The ciphertext is decrypted within the secure cryptographic coprocessor and reencrypted 
with the AES 256-bit key.

For more information about a sample REXX program that showcases step 2, see C.1, “CCA 
ciphertext translation REXX sample” on page 152.

For more information about these services and parameters, see ICSF Application 
Programmer’s Guide, SC14-7508.

6.5.2  Translating ciphertext to AES 256-bit encryption by using ICSF PKCS 
#11 services

Translating ciphertext from a weaker algorithm to AES 256-bit can be done by using the 
PKCS #11 Secret Key Reencrypt (CSFPSKR and CSFPSKR6) ICSF service. 

To translate ciphertext over to AES 256-bit encryption, complete the following steps:

1. Generate an AES 256-bit PKCS #11 key object by using the CKA_IBM_SECURE key 
attribute set to TRUE. For more information, see B.2, “PKCS #11 AES 256-bit key 
generation REXX sample” on page 137.

2. Call the PKCS #11 Secret Key Reencrypt service that passes the key handle that 
originally encrypted the ciphertext as the decrypt_handle and the new AES 256-bit key 
handle as the encrypt_handle.

The ciphertext is decrypted within the secure cryptographic coprocessor and reencrypted 
with the AES 256-bit key.

For more information about a sample REXX program that showcases step 2, see C.2, “PKCS 
#11 ciphertext translation REXX sample” on page 154.

For for more information about these services and parameters, see ICSF Application 
Programmer’s Guide, SC14-7508.

Note: This translate ciphertext service supports secure secret keys only.
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6.6  Quantum-safe digital signatures

Digital signatures are used to validate the authenticity and integrity of a message. Digital 
signatures also add nonrepudiation, which provides indisputable proof of origin for the signed 
data. 

Traditional public key cryptography, such as RSA and ECC, are compromised of a sufficiently 
powerful quantum computer that is running Shor’s algorithm. This process can lead to issues, 
such as data history manipulation by forging digital signatures. To protect against such 
issues, it is important to start adopting hybrid signature schemes that combine traditional 
public key cryptography and quantum-safe algorithms, such as CRYSTALS-Dilithium.

For more information about how organizations can use digital signatures to verify the 
authenticity of data, see 3.4, “Proof of authorship” on page 42.

This section describes how to digitally sign and verify data by using the CRYSTALS-Dilithium 
quantum-safe algorithm.

6.6.1  Generating and verifying CRYSTALS-Dilithium digital signature by using 
ICSF CCA services

To generate and verify a CRYSTALS-Dilithium digital signature, use the Digital Signature 
Generate (CSNDDSG and CSNFDSG) and Digital Signature Verify (CSNDDSV and 
CSNFDSV) ICSF services.

To generate a CRYSTALS-Dilithium signature, complete the following steps:

1. Generate a CRYSTALS-Dilithium CCA key token by using the CSNDPKB and CSNDPKG 
ICSF services. For more information, see 6.4.3, “Generating CRYSTALS-Dilithium key by 
using ICSF CCA services” on page 103. 

2. Call the CSNDDSG service and specify the CRDL-DSA, MESSAGE, and CRDLHASH 
rules. Pass the CRYSTALS-Dilithium private key token that was generated in step 1. 

With a Crypto Express8 CCA coprocessor, the message to be signed can be up to 
15000 bytes.

The generated signature is created. The signature size depends on the strength of the 
specified CRYSTALS-Dilithium key.

To verify a CRYSTALS-Dilithium signature, complete the following steps:

1. Call the PKA Public Key Extract (CSNDPKX and CSNFPKX) service to extract the 
CRYSTALS-Dilithium public key from the private key token.

2. Call the CSNDDSV service and specify the CRDL-DSA, MESSAGE, and CRDLHASH 
rules. Pass the CRYSTALS-Dilithium public key token that was extracted in step 1. 

With a Crypto Express8 CCA coprocessor, the message to be verified can be up to 
15000 bytes.

You receive a 0/0 return/reason code for a successful verification.

For more information about a sample REXX program that showcases a CRYSTALS-Dilithium 
digital signature generation and verification, see D.1, “CCA CRYSTALS-Dilithium digital 
signature generation and verification REXX sample” on page 158. 
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For more information regarding these services and parameters, see ICSF Application 
Programmer’s Guide, SC14-7508.

6.6.2  Generating and verifying CRYSTALS-Dilithium digital signature by using 
ICSF PKCS #11 services

To generate and verify a CRYSTALS-Dilithium digital signature, use the PKCS #11 Private 
Key Sign (CSFPPKS and CSFPPKS6) and PKCS #11 Public Key Verify (CSFPPKV and 
CSFPPKV6) ICSF services.

To generate a CRYSTALS-Dilithium signature, complete the following steps:

1. Generate a CRYSTALS-Dilithium PKCS #11 key pair by using the CSFPGKP ICSF 
service. Ensure that the private key attribute list contains CKA_SIGN set to TRUE, and the 
public key attribute list contains CKA_VERIFY set to TRUE. For more information, see 
6.4.4, “Generating CRYSTALS-Dilithium key by using ICSF PKCS #11 services” on 
page 104.

2. Call the CSFPPKS service and specify the LI2 rule. Pass the CRYSTALS-Dilithium private 
key handle that was generated in step 1. 

3. The generated signature is created. The signature size depends on the strength of the 
specified CRYSTALS-Dilithium key.

To verify a CRYSTALS-Dilithium signature, perform the following steps call the CSFPPKV 
service and specify the LI2 rule. Pass the CRYSTALS-Dilithium public key handle. Pass the 
signature to verify and the original message.

A 0/0 return/reason code is returned for a successful verification.

D.2, “PKCS #11 CRYSTALS-Dilithium digital signature generation and verification REXX 
sample” on page 161 contains a sample REXX program that showcases a 
CRYSTALS-Dilithium digital signature generation and verification. 

For more information about these services and parameters, see ICSF Application 
Programmer’s Guide, SC14-7508.

6.6.3  Using digital signatures to protect SMF records

SMF records are an important part of the auditability to the z/OS platform. For example, SMF 
records can contain important security-related information, such as RACF processing records 
(SMF record type 80).

It is important to ensure that these records are never tempered with. SMF digital signature 
provides a cryptographic means to verify the integrity of the records when log streams are 
used as the recording media.

In this section, we demonstrate how SMF records digital signature is used to sign SMF 
records and how to transition to quantum-safe algorithms for that purpose.

Configuring SMF digital signature
An SMF digital signature is based on a token and a key (RSA or ECC). The digital signature 
can be the same for all the records or specific to a log stream.
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Step 1: Creating the token and the associated key pair
We created a PKCS#11 token that is called QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1. Then, we 
created a key pair that we bound to this certificate (see Example 6-6).

Example 6-6   Creating and binding a PKCS#11 token and a key pair (RSA)

RACDCERT ADDTOKEN(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1) 
RACDCERT GENCERT ID(STCID) SUBJECTSDN(CN('SMF sign cert')) +    
WITHLABEL('SMF sign certificate') SIZE(2048) RSA +               
NOTAFTER(DATE(2023/04/18)) 
RACDCERT BIND(ID(STCID) LABEL('SMF sign certificate') DEFAULT + 
TOKEN(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1) 

Step 2: Configuring SMF for digital signature
Example 6-7 shows an SMFPRMxx parmlib member (truncated), which enables SMF digital 
signature for a log stream IFASMF.ALLSYS.DATA that stores selected z/OS SMF records. 
Other SMF records that are directed to the default log stream IFASMF.ALLSYS.DEFAULT do 
not have SMF digital signature processing enabled.

Example 6-7   SMFPRMxx parmlib member enabling SMF digital signature for SMF log streams

ACTIVE                      /*ACTIVE SMF RECORDING*/                   
LISTDSN                     /* LIST DATA SET STATUS AT IPL*/           
NOPROMPT                    /*DON'T PROMPT THE OPERATOR  */            
DEFAULTLSNAME(IFASMF.ALLSYS.DEFAULT,COMPRESS(PERMFIX(32M)))            
LSNAME(IFASMF.ALLSYS.DATA,TYPE(0,23,30,42,70:79,80:83,99,113),         
     COMPRESS(PERMFIX(64M))                                            
     RECSIGN(HASH(SHA512),SIGNATURE(RSA),                              
     TOKENNAME(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1)) 
)                                                                      
RECORDING(LOGSTREAM)    
… 

Note that the log stream IFASMF.ALLSYS.DATA must be defined with a MAXBUFSIZE of 
65532.

Step 3: Extracting the data from the log stream
When extracting the SMF records from the log streams, we want to ensure that the SMF 
digital signature is available for post-processing. For this purpose, the NOSIGSTRIP 
parameter must be specified (see Example 6-8).

Example 6-8   JCL for SMF records extraction, preserving SMF digital signature

//IFASMFDL EXEC PGM=IFASMFDL,REGION=0M                                 
//OUTDD1   DD DSN=RBOOK.SMF.LOGS,DISP=(NEW,CATLG,DELETE),             
//         SPACE=(CYL,(100,100),RLSE),                                 
//         DCB=(LRECL=32760,RECFM=VBS,BLKSIZE=0)                       
//SYSPRINT DD  SYSOUT=A                                                
//SYSIN    DD  *                                                       
 LSNAME(IFASMF.ALLSYS.DATA,OPTIONS(DUMP))                              
 OUTDD(OUTDD1,TYPE(0:255),START(1400),END(2000))                       
 NOSIGSTRIP                                                            
 DATE(2022096,2022096)
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Step 4: Validating the SMF signature
By using the IFASMFDP utility, we can specify the SIGVALIDATE parameter along with the 
hashing method and the name of the token. The utility validates the records and ensures that 
they are all signed with the specified token (see Example 6-9). 

Example 6-9   JCL to create SMF records signing validation

//SMF      EXEC     PGM=IFASMFDP                       
//DUMPIN   DD  DISP=SHR,DSN=RBOOK.SMF.LOGS            
//DDSMF1  DD  DSN=RBOOK.SMF.RACF,                     
//             DISP=(NEW,CATLG,DELETE),                
//           SPACE=(CYL,(100,100),RLSE),               
//           DCB=(RECFM=VBS,BLKSIZE=32748,LRECL=32756) 
//SYSPRINT DD SYSOUT=A                                 
//SYSIN    DD  *                                       
 SID(SYSA)                                             
 INDD(DUMPIN,OPTIONS(DUMP))                            
 OUTDD(DDSMF1,TYPE(30,82))                             
 NOSIGSTRIP                                            
 DATE(2022096,2022096)                                 
 START(1400) END(1800)                                 
 SIGVALIDATE(HASH(SHA512),                             
     TOKENNAME(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1))

Sample output from the SMF records signing validation job is shown in Example 6-10. 

Example 6-10   SMF records signing validation report

IFA010I SMF DUMP PARAMETERS                                                                                            
IFA010I REPORTOPTS(NOSUBTYPE) -- DEFAULT                                                                               
IFA010I NOASIGVALIDATE -- DEFAULT                                                                                      
IFA010I SIGVALIDATE(HASH(SHA512),                                                                                      
                TOKENNAME(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1)) -- SYSIN                                                  
                                                                                                                       
IFA010I END(1800) -- SYSIN                                                                                             
IFA010I START(1400) -- SYSIN                                                                                           
IFA010I DATE(2022096,2022096) -- SYSIN                                                                                 
IFA010I NOSIGSTRIP -- SYSIN                                                                                            
IFA010I OUTDD(DDSMF1,TYPE(30,82)) -- SYSIN                                                                             
IFA010I INDD(DUMPIN,OPTIONS(DUMP)) -- SYSIN                                                                            
IFA010I SID(SYSA) -- SYSIN                                                                                             
IFA020I DDSMF1   -- RBOOK.SMF.RACF                                                                                    
IFA020I DUMPIN   -- RBOOK.SMF.LOGS   

                                           SUMMARY ACTIVITY REPORT                                                     
      START DATE-TIME  04/06/2022-14:00:00                         END DATE-TIME  04/06/2022-19:59:58                  
      RECORD       RECORDS         PERCENT      AVG. RECORD   MIN. RECORD   MAX. RECORD       RECORDS                  
        TYPE          READ        OF TOTAL           LENGTH        LENGTH        LENGTH       WRITTEN                  
           2         5,974          4.35 %           347.85            18           356           447                  
           3             1           .00 %            18.00            18            18             1                  
          23            24           .02 %         8,062.00         8,062         8,062             0                  
          30        20,995         15.29 %         1,529.65           480         6,121         3,244                  

Tip: You do not have write out records to another data set when performing validation, as 
we show in the example. An alternative is to use a dummy data set, by replacing the 
DDSMF1 DD statements with DDSMF1 DD DUMMY.
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          42         5,674          4.13 %         2,473.64           176        32,444             0                  
          70         1,224           .89 %        20,887.45         1,672        32,600             0                  
          71           288           .21 %         2,596.00         2,596         2,596             0                  
          72        13,824         10.06 %         1,791.39         1,324        13,328             0                  
          73           288           .21 %        29,216.00        29,216        29,216             0                  
          74         5,616          4.09 %        10,474.92           308        32,520             0                  
          75           576           .42 %           272.00           272           272             0                  
          77           288           .21 %           585.25           328           832             0                  
          78           576           .42 %         6,428.00         4,056         9,008             0                  
          82            47           .03 %           120.00           120           120            31                  
          99        75,619         55.06 %         2,877.35           419         8,870             0                  
         113         6,336          4.61 %         1,606.00         1,462         1,834             0                  
      TOTAL        137,350           100 %         2,901.58            18        32,600         3,723                  
      NUMBER OF RECORDS IN ERROR               0

                                 RECORD VALIDATION REPORT FOR SYSA                                                     
      RECORD   RECORD   VALIDATION      VALIDATION START       VALIDATION END       RECORDS        GROUPS     INTERVALS
        TYPE  SUBTYPE      FAILURE             DATE-TIME            DATE-TIME     VALIDATED     VALIDATED     VALIDATED
          30        2            N   04/06/2022-14:00:00  04/06/2022-18:00:00         2,620            73            48
          30        6            N   04/06/2022-14:00:00  04/06/2022-18:00:00           624            48            48
          30        3            N   04/06/2022-14:00:00  04/06/2022-18:00:00             0             0            48
          30        4            N   04/06/2022-14:00:00  04/06/2022-18:00:00             0             0            48
          30        5            N   04/06/2022-14:00:00  04/06/2022-18:00:00             0             0            48
          82       20            N   04/06/2022-14:00:00  04/06/2022-18:00:00            31            31            48
      VALIDATION SUCCEEDED

Implementing SMF alternative signatures
As described in “Impact of Shor’s and Grover’s algorithms” on page 7, traditional public key 
cryptography, such as RSA and ECC, can be compromised by a quantum computer that is 
running Shor’s algorithm. To maintain a safe way to validate SMF audit data, you can use a 
function that was introduced with z/OS 2.4 that allows a secondary (or alternative) signature 
that uses CRYSTALS-Dilithium.

Step 1: Generate the PKCS #11 CRYSTALS-Dilithium key pair

The PKCS #11 CRYSTALS-Dilithium key pair can be clear or secure. For a secure key pair, 
an Enterprise PKCS #11 coprocessor Crypto Express7S or later must be available with the 
suitable ICSF minimum service level. The minimum hardware and software levels are listed in 
Table 4-2 on page 55. 

For more information about generating PKCS #11 CRYSTALS-Dilithium key pair services, 
see 6.4.4, “Generating CRYSTALS-Dilithium key by using ICSF PKCS #11 services” on 
page 104.

Step 2: Configuring SMF for alternative digital signature
Example 6-11 shows an SMFPRMxx parmlib member (truncated) that enables an SMF digital 
signature, and alternative digital signature for a log stream that stores z/OS events. The 
alternative signature is specified in SMFPRMxx by using the ARECSIGN parameter and the 
RECSIGN parameter. When ARECSIGN is used, RECSIGN also must be specified. The 
specified TOKENNAME must be the PKCS #11 token that contains the CRYSTALS-Dilithium 
key object.

Example 6-11   SMFPRMxx parmlib member that enables SMF digital signature for SMF log streams 

ACTIVE                      /*ACTIVE SMF RECORDING*/                   

Note: As of this writing, SMF alternative signature support is for CRYSTALS-Dilithium 65 
Round 2 only.
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LISTDSN                     /* LIST DATA SET STATUS AT IPL*/           
NOPROMPT                    /*DON'T PROMPT THE OPERATOR  */            
DEFAULTLSNAME(IFASMF.ALLSYS.DEFAULT,COMPRESS(PERMFIX(32M)))            
LSNAME(IFASMF.ALLSYS.DATA,TYPE(0,23,30,42,70:79,80:83,99,113),         
     COMPRESS(PERMFIX(64M))                                            
     RECSIGN(HASH(SHA512),SIGNATURE(RSA),                              
     TOKENNAME(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1))
     ARECSIGN(HASH(SHA512),SIGNATURE(LI2),             
     TOKENNAME(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS2))       
)                                                                      
RECORDING(LOGSTREAM)    

Step 3: Extracting the data from the log stream
Although the extraction process did not change, we still need to use the NOSIGSTRIP 
parameter to preserve the record signatures (see Example 6-12).

Example 6-12   JCL for SMF records extraction, preserving SMF digital signature

//IFASMFDL EXEC PGM=IFASMFDL,REGION=0M                                 
//OUTDD1   DD DSN=RBOOK.SMF.LOGS,DISP=(NEW,CATLG,DELETE),             
//         SPACE=(CYL,(100,100),RLSE),                                 
//         DCB=(LRECL=32760,RECFM=VBS,BLKSIZE=0)                       
//SYSPRINT DD  SYSOUT=A                                                
//SYSIN    DD  *                                                       
 LSNAME(IFASMF.ALLSYS.DATA,OPTIONS(DUMP))                              
 OUTDD(OUTDD1,TYPE(0:255),START(1400),END(2000))                       
 NOSIGSTRIP                                                            
 DATE(2022096,2022096)

Step 4: Validating the SMF signature
Here, we want to specify the SIGVALIDATE and ASIGVALIDATE parameters (see 
Example 6-13). 

Example 6-13   JCL to create SMF records signing validation including alternative signature

//SMF      EXEC     PGM=IFASMFDP                       
//DUMPIN   DD  DISP=SHR,DSN=RBOOK.SMF.LOGS            
//DDSMF1  DD  DSN=RBOOK.SMF.RACF,                     
//             DISP=(NEW,CATLG,DELETE),                
//           SPACE=(CYL,(100,100),RLSE),               
//           DCB=(RECFM=VBS,BLKSIZE=32748,LRECL=32756) 
//SYSPRINT DD SYSOUT=A                                 
//SYSIN    DD  *                                       
 SID(SYSA)                                             
 INDD(DUMPIN,OPTIONS(DUMP))                            
 OUTDD(DDSMF1,TYPE(30,82))                             
 NOSIGSTRIP                                            
 DATE(2022096,2022096)                                 
 START(1400) END(1800)                                 
 SIGVALIDATE(HASH(SHA512),                             
     TOKENNAME(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1))
 ASIGVALIDATE(HASH(SHA512),                            
     TOKENNAME(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS2)) 
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6.7  Quantum-safe hybrid key exchange

Key exchange allows two parties to establish a shared secret by using public key 
cryptography. 

With the introduction of the CRYSTALS-Kyber algorithm, is it now possible to perform a 
quantum-safe hybrid key exchange scheme that combines the protection of traditional Elliptic 
Curve Cryptography (ECC) and the quantum-safe CRYSTALS-Kyber algorithm. This hybrid 
key exchange scheme provides two layers of protection and ensures that all key exchanges 
are protected from attacks by traditional and quantum computers. 

For more information about how organizations can use secure key exchange to protect their 
sensitive data, see 3.2, “Use case: Sharing keys securely” on page 31.

This section describes how to perform a quantum-safe hybrid key exchange by using CCA 
and PKCS #11 services.

6.7.1  Performing a hybrid quantum-safe key exchange scheme by using ICSF 
CCA services

A hybrid quantum-safe key exchange can be performed with the PKA Encrypt (CSNDPKE 
and CSNFPKE) and EC Diffie-Hellman (CSNDEDH and CSNFEDH) ICSF services. 

The following Access Control Points (ACP) must be enabled:

� PKA Encrypt -Allow CRYSTALS-Kyber keys (0083x)
� EC Diffie-Hellman -Allow Hybrid QSA Scheme (035Dx)

Consider the following hybrid quantum-safe key exchange scheme that includes two 
participants: Alice and Bob are two parties who want securely exchange information. They 
can be a company and a Business Partner, for example. 

Step 1: Alice
1. Alice creates the following keys:

– Kyber-priv-A, Kyber-pub-A: CRYSTALS-Kyber 1024 key pair
– EC-priv-A, EC-pub-A: ECC key pair for key agreement
– Kyber-cert-A, EC-cert-A: authentication forms of Kyber-pub-A and EC-pub-A

2. Alice sends Kyber-cert-A and EC-cert-A to Bob.

Step 2: Bob
1. Bob receives and validates Kyber-cert-A and EC-cert-A

2. Bob creates the following keys:

– AES-ciph-B: AES CIPHER key in a CCA key token

– EC-priv-B, EC-pub-B: ECC key pair for key agreement

– EC-cert-B: authenticated form of EC-pub-B

– Kyber-pub-A CCA public key token with public key pulled from Kyber-cert-A

Note: AES-ciph-B must be as strong as the derived shared key (for example, 
AES 256-bit) and allow encrypt and decrypt operations.
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3. Bob creates the shared key derivation input by using the CSNDPKE service:

– RANDOM keyword, AES-ciph-B, Kyber-pub-A, AES encryption IV

– Generates a random 32B value: rand-32

– AES-CBC encrypts rand-32 by using key AES-ciph-B and the AES encryption IV 
returning [AES-ciph-B(rand-32)] in the keyvalue parameter. 

– CRYSTALS-Kyber encrypts rand-32 with Kyber-pub-A returning 
[Kyber-pub-A(rand-32)] in the PKA_enciphered_keyvalue parameter.

4. Bob completes the shared key derivation by using CSNDEDH

Bob calls CSNDEDH by using a derivation keyword and wanted key length, 
[AES-ciph-B(rand-32)], AES-ciph-B, AES encryption IV, EC-priv-B, EC-cert-A, output 
skeleton token.

Consider the following points about CSNDEDH:

– Decrypts rand-32 by using the key AES-ciph-B and the AES encryption IV.

– Uses EC-priv-B and EC-cert-A with ECDH to generate the Z value.

– Passes Z and rand-32 to the key derivation function that is indicated by the derivation 
keyword, rand-32 is the salt or OtherData. The shared key of the requested length is 
derived.

– Places the shared key in the provided output skeleton token and then, encrypts the 
key value.

– Returns the final CCA shared key token.

5. Bob stores the shared key 

6. Bob sends EC-cert-B, [Kyber-pub-A(rand-32)] to Alice.

Step 3: Alice
1. Alice receives and validates EC-cert-B, [Kyber-pub-A(rand-32)].

2. Alice completes the shared key derivation by using CSNDEDH 

Alice calls CSNDEDH with a derivation keyword and the wanted key length, [Kyber-pub-A 
(rand-32)], Kyber-priv-A, EC-priv-A, EC-cert-B, output skeleton token.

Consider the following points about CSNDEDH:

– Decrypts rand-32 by using Kyber-priv-A.

– Uses EC-priv-A and EC-cert-B with ECDH to generate the Z value.

– Passes Z and rand-32 to the key derivation function that is indicated by the derivation 
keyword, rand-32 is the salt or OtherData. The shared key of the requested length is 
derived.

– Places the shared key in the provided output skeleton token and then, encrypts the key 
value.

– Returns the final CCA shared key token.

3. Alice stores the shared key.

The shared key is now established by Alice and Bob.
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Role of CSFNDPKE
The role of the PKA Encrypt (CSNDPKE) service in this scheme is to create the rand-32 
derivation input and return rand-32 in the following forms:

� Encrypted by Bob’s AES cipher key, AES-ciph-B
� Encrypted by Alice’s CRYSTALS-Kyber public key, Kyber-pub-A

This process is accomplished in one call to CSNDPKE:

� Inputs: 

– RANDOM rule-array keyword
– AES-ciph-B: AES-cipher key for Bob

– Kyber-pub-A as PKA_key_identifier: CRYSTALS-Kyber key for Alice

� Outputs:

– keyvalue parameter: [AES-ciph-B(rand-32)]
– PKA_enciphered_keyvalue parameter: [Kyber-pub-A(rand-32)]

Consider the following points:

� Authentication of the public keys that are used in the scheme is the responsibility of the 
host.

Currently, CRYSTALS-Kyber keys do not participate in PKI processes. The kyber-cert-A 
certificate for a CRYSTALS-Kyber public key recognizes that certificate formats are 
needed for the authentication part of a protocol.

For the ECC public keys, the CCA internal PKI can be used for authentication if the trust 
anchor was installed in the adapter.

� A full protocol must include a Key Check Value that is calculated over the shared key that 
was created by Bob so that Alice can verify the creation of an agreed shared key.

For more information about a REXX sample that shows this end-to-end scheme that uses 
ICSF CCA services, see E.1, “CCA hybrid quantum-safe key exchange scheme REXX 
sample” on page 166.

For more information about these services and parameters, see ICSF Application 
Programmer’s Guide, SC14-7508.

6.7.2  Performing a hybrid quantum-safe key exchange scheme by using ICSF 
PKCS #11 services

A hybrid quantum-safe key exchange can be performed by using the PKCS #11 Derive Key 
(CSFPDVK and CSFPDVK6) ICSF service.

Consider the following hybrid quantum-safe key exchange scheme that includes two 
participants: Alice and Bob, who are two parties that want to securely exchange information. 
They can be a company and a Business Partner, for example. 

Step 1: Alice 
1. Alice generates an ECC key pair (EC-pub-A, EC-priv-A) for key agreement by using the 

PKCS #11 Generate Key Pair service.

2. Alice creates EC-cert-A: authenticated form of EC-pub-A

Note: AES-ciph-B must be as strong as the derived shared key.
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3. Alice sends EC-cert-A to Bob.

Step 2: Bob
1. Bob receives and validates EC-cert-A.

2. Bob creates the following keys:

– ECC (EC-pub-B, EC-priv-B) key pair for key agreement by using the PKCS #11 
Generate Key Pair service.

– CRYSTALS-Kyber (Kyb-pub-B, Kyb-priv-B) key pair by using the PKCS #11 Generate 
Key Pair service.

– EC-pub-A PKCS #11 public key object that was pulled from EC-cert-A by using the 
PKCS #11 Token Record Create service.

– Kyb-cert-B and EC-cert-B: authenticated forms of Kyb-pub-B and EC-pub-B.

3. Bob derives a generic secret key object (GenSec-B) by passing EC-priv-B and EC-pub-A 
to PKCS #11 Derive Key.

4. Bob sends Kyb-cert-B and EC-cert-B to Alice.

Step 3: Alice
1. Alice receives and validates Kyb-cert-B and EC-cert-B.

2. Alice creates Kyb-pub-B and EC-pub-B PKCS #11 public key objects that were pulled from 
their respective certificates by using the PKCS #11 Token Record Create service.

3. Alice derives a generic secret key object (GenSec-A) by passing EC-priv-A and EC-pub-B 
to PKCS #11 Derive Key.

4. Alice passes GenSec-A and Kyb-pub-B to PKCS #11 Derive Key to encapsulate random 
key material (rand-A). The Kyber-encapsulated random key material [Kyb-pub-B(rand-A)] 
and derived shared key are returned. The shared key is the output in the 
target_key_handle parameter.

5. Alice sends to Bob the Kyber-encapsulated random key material [Kyb-pub-B(rand-A)].

Step 4: Bob
Bob passes GenSec-B and Kyb-priv-A to PKCS #11 Derive Key to decapsulate 
[Kyb-pub-B(rand-A)]. The derived shared key is output in the target_key_handle parameter.

The shared key is now established at Alice and Bob.

Authentication of the public keys that are used in the scheme is the responsibility of the host. 

Currently, CRYSTALS-Kyber keys do not participate in PKI processes. The Kyb-cert-B 
certificate for the CRYSTALS-Kyber public key recognizes that certificate formats are needed 
for the authentication part of a protocol.

The lack of PKI support for CRYSTALS-Kyber can be circumvented by using a trustworthy 
public RSA or EC certificate to verify a signed Kyber SPKI. 

For more information about a REXX sample that shows this end-to-end scheme that uses 
ICSF PKCS #11 services, see E.2, “PKCS #11 hybrid quantum-safe key exchange scheme 
REXX sample” on page 176. 

For more information about these services and parameters, see the ICSF Application 
Programmer’s Guide, SC14-7508.
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6.8  Quantum-safe hashing

Hashing is the process of transforming data (for example a key or message) into a shorter, 
fixed-length message digest by using a cryptographic hash algorithm. 

Hashes are used in various cryptographic operations, such as digital signatures, and key 
derivation functions, such as PBKDF2, Message Authentication Codes (MAC). The message 
digests that are produced from a hash algorithm ensures the integrity of the data and protects 
against unauthorized alteration of the source data. 

It is important to start transitioning from weaker hash algorithms, such as SHA-1 or MD2, to 
much stronger hash algorithms, such as SHA-256 or SHA-512. 

This section describes how to perform an SHA-512 hash over a message by using CCA and 
PKCS #11 ICSF services.

6.8.1  Hashing a message with the SHA-512 algorithm by using ICSF CCA 
services

To hash a message by using the SHA-512 algorithm, use the One-Way Hash Generate 
(CSNBOWH or CSNBOWH1 and CSNEOWH or CSNEOWH1) ICSF service.

To hash a message by using the SHA-512 algorithm, complete the following steps:

1. Call the CSFBOWH ICSF service that passes the SHA-512 and ONLY rules. 

2. Pass the message to hashed in the text parameter. (Optionally, the message can be 
hashed in parts by using the chaining flag rules and the chaining_vector parameter.)

The 64-byte message digest is output in the hash parameter.

For more information about a sample REXX program that showcases this process, see F.1, 
“CCA SHA-512 one-way hash REXX sample” on page 188.

For more information about this service and parameters, see ICSF Application Programmer’s 
Guide, SC14-7508.

6.8.2  Hashing a message with the SHA-512 algorithm by using ICSF PKCS #11 
services

To hash a message by using the SHA-512 algorithm, use the PKCS #11 One-Way Hash, 
Sign, or Verify (CSFPOWH and CSFPOWH6) ICSF service.

To hash a message by using the SHA-512 algorithm, complete the following steps:

1. Initialize a PKCS #11 token by using the PKCS #11 Token Record Create (CSFPTRC and 
CSFPTRC6) service.

2. Call the CSFPOWH ICSF service that passes the SHA-512 and ONLY rules. 

3. Pass the message to hashed in the text parameter. 

4. Pass the token handle that was created in step one in handle parameter. (Optionally, the 
message can be hashed in parts by using the chaining flag rules and the chaining_vector 
parameter.)

The 64-byte message digest is output in the hash parameter.
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For more information about a sample REXX program that showcases step 2, see F.2, “PKCS 
#11 SHA-512 one-way hash REXX sample” on page 189. 

For more information about these services and parameters, see ICSF Application 
Programmer’s Guide, SC14-7508.

6.9  Validating your quantum-safe transition 

As discussed in 5.1, “Collection tools overview” on page 72, the usage statistics are key to a 
comprehensive cryptographic inventory. 

In Example 6-14, we can see that non-quantum-safe algorithms are used in our DATAOWN 
job (which is a formatted report of SMF record type 82, subtype 31 [hex ’001F’]). We can 
identify the use of single DES, AES 128, weak RSA 1024, and so on.

Example 6-14   Crypto usage statistics:Checking for non-quantum-safe algorithms

Type=82 Subtype=001F Crypto Usage Statistics                                     
Written periodically to record crypto usage counts
22 Feb 2022 15:12:27.73                                                          
   TME... 005389D5 DTE... 0122053F SID... SP21    SSI... 00000000 STY... 001F    
   INTVAL_START.. 02/22/2022 19:11:30.001815    
   INTVAL_END.... 02/22/2022 19:12:27.737573    

USERID_AS.....DATAOWN                                                        
   USERID_TK.....                                                                
   JOBID.........J0000055                                                       
   JOBNAME.......DATAOWN                                                       
   JOBNAME2......                                                                
   PLEXNAME......SYS1                                                          
   DOMAIN........0                                                              
   ENG...CARD...8C11/99EA6127...17                                              
   ENG...CPACF...150                                                            
   ALG...DES56......2                                                           
   ALG...AES128.....2                                                           
   ALG...RSA1024....1                                                           
   ALG...ECCBP192...1                                                           
   ALG...MD5........45                                                          
   ALG...RPMD160....15                                                          
   ALG...SHA1....... 70                                             
   ALG...SHA3-224... 13                                             
   ALG...SHA3-256... 15                                             
   ALG...SHA3-384... 13                                             
   ALG...SHA3-512... 13                                             
   ALG...SHAKE128... 12                                             
   ALG...SHAKE256... 14                                             
   SRV...CSFKYT..... 2                                              
   SRV...CSFDSG..... 2                                              
   SRV...CSFOWH..... 264                                            
   SRV...CSFOWH1.... 3                                              
   SRV...CSFIQF..... 485                                            
   SRV...CSFIQF2.... 2     
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After identifying the weak algorithms and replacing them with quantum-safe algorithms, ICSF 
usage statistics can be used to monitor progress with a formatted report of SMF record type 
82, subtype 31 (hex ‘001F’).

In Example 6-15, most algorithms are quantum-safe. For example, we no longer use AES 
128; instead, we use AES 256. We can also see that CRYSTALS-Dilithium and 
CRYSTALS-Kyber algorithms are being used. 

Example 6-15   Crypto usage statistics: Checking for quantum-safe algorithms

Type=82 Subtype=001F Crypto Usage Statistics 
Written periodically to record crypto usage counts
Mar 2022 15:35:30.00                                                        
   TME... 0055A5C8 DTE... 0122070F SID... SP21    SSI... 00000000 STY... 001F  
   INTVAL_START.. 03/11/2022 19:33:59.202360                                   
   INTVAL_END.... 03/11/2022 19:35:30.001479                                   
   USERID_AS..... QSAFE                                                      
   USERID_TK.....                                                              
   JOBID......... T0000046                                                     
   JOBNAME....... QSAFE                                                      
   JOBNAME2......                                                              
   PLEXNAME...... SYS1                                                        
   DOMAIN........ 0                                                            
   ENG...CARD...8C00/99EA6006... 17                                            
   ENG...CPACF... 5      
   ALG...DES112..... 1                
   ALG...AES256..... 9         
   ALG...ECCP384.... 6         
   ALG...KY1024R2... 3         
   ALG...LI2-87R3... 4         
   SRV...CSFDSG..... 2         
   SRV...CSFDSV..... 2         
   SRV...CSFPKG..... 3         
   SRV...CSFPKE..... 1         
   SRV...CSFPKX..... 3         
   SRV...CSFKYT2.... 2         
   SRV...CSFEDH..... 2         
   SRV...CSFPKB..... 3         
   SRV...CSFCTT2.... 1 

Important: Data that is protected with a retired algorithm must not remain in the system 
after it is protected by using a quantum-safe algorithm. Removing the data that was 
encrypted by using a retired algorithm eliminate the risk of an attacker finding that data and 
breaking the encryption. 
Chapter 6. Deploying quantum-safe capabilities 119



120 Transitioning to Quantum-Safe Cryptography on IBM Z



Appendix A. Finding cryptographic attributes

The purpose of this appendix is to introduce a process that can be used when creating your 
cryptographic inventory with the available tools. The output from this process helps you to 
make qualified choices in terms of protecting your programs and applications against future 
threats from quantum computer attacks, which are also known as a cryptographically 
relevant quantum computer (CRQC) attacks.

The suggested process requires manual analysis to discover which cryptographic algorithms, 
key lengths, and key labels are used in your programs and applications. 

For more information, see “Establishing a cryptographic inventory” on page 58 and Chapter 5, 
“Creating a cryptographic inventory” on page 71.

This appendix includes the following topics:

� A.1, “Tools for cryptographic inventory” on page 122
� A.2, “Investigation process” on page 123
� A.3, “Process that was used” on page 125
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A.1  Tools for cryptographic inventory

The examples that are used in this appendix show how cryptographic attributes can be 
located for a COBOL program by using the following IBM Z tools:

� System Display and Search Facility (SDSF) Job Listing

This utility allows you to monitor, control, and view the output of jobs in the system. After 
submitting a job, it is common to use SDSF to review the output for successful completion, 
or to review and correct JCL errors.

� ICSF System Management Facility (SMF) records: 

ICSF uses SMF record type 82 to record certain ICSF events. The following recorded 
information is important to our discussion:

– Sub-type 31, which contains cryptographic statistics data for cryptographic engines 
(ENG), cryptographic services (SRV), and cryptographic algorithms (ALG) for a Logical 
Partition (LPAR)

– Sub-types 40 – 42, which contains ICSF key lifecycle events.

– Sub-types 44 – 46, which contains ICSF key usage events.

� IBM Application Discovery and Delivery Intelligence, which provides API call information 
from scanning COBOL applications.

� IBM Crypto Analytics Tool (CAT), which provides information about the cryptographic 
entities, including the key material and key data sets.

For more information about tools, see Chapter 5, “Creating a cryptographic inventory” on 
page 71.
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A.2  Investigation process

You can start the investigation process based on output from any of the four IBM tools, as 
shown in Figure A-1.

Figure A-1   Tools for cryptographic inventory

The investigation process and steps vary depending on the output from the tool with which 
you start. The different steps are described next.

A.2.1  Starting with application source code scan from IBM ADDI

If you are starting with application source code that was scanned by IBM ADDI and uses 
cryptography, complete the following steps: 

1. Select the application source code from the ADDI scan that you want to investigate.

2. Identify the ProgramName in the ADDI scan of the application source code.

3. Determine the job or started task that runs the executable.

4. Create reports from ICSF SMF record type 82:

– Tailor CSFSMFJ in SYS1.SAMPLIB to fit your environment.
– Run CSFSMFJ.

5. Identify the ICSF services that are called by the job or started task and the related key 
material from the SMF records.

6. Review the key details from the CAT snapshot.
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A.2.2  Starting with a policy check in the IBM CAT

If you ran a policy check in the IBM CAT component and now have a list of keys from your 
keystores that are deemed to be weak keys, complete the following steps: 

1. Review the key details from the CAT policy scan in the snapshot.

2. Create reports from ICSF SMF record type 82 that reference the key details by key label or 
by key check value (KCV): 

– Tailor CSFSMFJ in SYS1.SAMPLIB to fit your environment
– Run CSFSMFJ 

3. Identify the ICSF service calls that relate to the key material from the SMF records. 

4. Determine the job or started task from the ICSF SMF records.

5. Identify the executable from the job listing in SDSF and application source code. 

6. Review the ADDI scanning of the application source code.

A.2.3  Starting with an application that you know 

If you know the application that uses cryptographic functions, complete the following steps: 

1. Select the application jobs or started tasks in the SDSF job listing.

2. Determine the application source code from the executable from the job.

3. Create reports from ICSF SMF record type 82:

– Tailor CSFSMFJ in SYS1.SAMPLIB to fit your environment
– Run CSFSMFJ 

4. Identify the ICSF service calls that relate to key material from the ICSF SMF records. 

5. Verify the ADDI scanning of the application source code.

6. Review the key details from the CAT snapshot.

A.2.4  Starting with SMF record type 82 reports

If you find SMF 82 subtype 31 records that indicate the use of weak cryptographic algorithms, 
complete the following steps:

1. Identify the jobs or started tasks and users, ICSF service calls, and key material from the 
SMF 82 records.

2. Find the jobs or started tasks from the SMF records in the SDSF job listing. 

3. Identify the executable modules from the SDSF job listing. 

4. Determine the application source code from the executable. 

5. Verify the ADDI scanning of the application source code.

6. Review the key details from the CAT snapshot.

Regardless of the investigation process that you decide to use, all findings of the 
cryptographic usage and configuration in your environment must be documented in your 
cryptographic inventory, as described in “Establishing a cryptographic inventory” on page 58.
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A.3  Process that was used

In this section, we provide examples of how to proceed with the investigation process by 
using an ADDI scanning of a set of source modules, as described in A.2.1, “Starting with 
application source code scan from IBM ADDI” on page 123. Examples of key usage events 
and a key lifecycle event are provided.

A.3.1  Examples of finding key usage events

In Figure A-2, we can see that a source module and a few sub modules were ADDI scanned. 
The program is called DKMSKSA (see the ProgramName column). 

Figure A-2   Sample1: Source module

Next, we identify two cryptographic functions that are used by DKMSKSA and map them to 
the key material. 

A call to APIName CSNBENC that is found in DKMSKSA shows the StartRow (8960 and 
9202) of the call to CSNBENC.

The value that is shown in the StartRow column is the line number in DKMSKSA where 
CSNBENC is called.

To map the APIName from CCA to an ICSF service call from the ProgramName and 
APIDescription, we must take a short detour. In Figure A-3, we can see that the ICSF entry 
point name (CSFENC) corresponds to the CCA entry point name (CSNBENC). 

Figure A-3   Resource names for CCA and ICSF entry points: Encipher

The CCA and ICSF entry point names tell you which cryptographic operations are being 
used. 

The DKMSRKX source module also does a call to CSNDRKX (see Figure A-4). It can be 
seen that the CSNDRKX call is made from StartRow 395 in DKMSRKX (ProgramName). 

Figure A-4   Sample 2: Source module
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Once again to map the APIName from CCA to an ICSF service call from the ProgramName 
and APIDescription, we must take a short detour. In Figure A-5 we can see that the ICSF 
entry point name (CSNDRKX) corresponds to the CCA entry point name (CSFRKX).

Figure A-5   Resource names for CCA and ICSF entry points - Remote Key Export

For more information about resource names for CCA and ICSF entry points, see CCA and 
ICSF entry points, see ICSF Application Programmer’s Guide, SC14-7508.

Having identified the two ICSF service calls, we now proceed to the next step in the 
investigation process: identifying the executable module from the source module. This 
process requires that you understand the steps that are involved in building an executable 
from application source code and finding the name of the executable. 

In our environment, we determined that the DKMSKSA includes the DKMSRKX source code. 

Next, we identify the corresponding job execution from the SDSF job listing. At this point, 
application knowledge is needed in terms of which jobs are involved in executing DKMSKSA 
and how the program invocation is made. Figure A-6 shows a list of the jobs that execute the 
DKMSKSA program. The jobs executed on 25 May 2022 (05/25/2022) around 7:00 AM.

Figure A-6   Job listing

Important: The job execution time is needed to identify the relevant SMF records.
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For our example, we identified the job IDs that are based on the DKMSKSA program in the 
JCL libraries. This task also is manual.

Using two jobs as examples for SMF record type 82 subtypes 31 and 44 correlation, we look 
at job IDs JOB07760 and JOB07761 from Figure A-6 on page 126.

By looking at the JCL library for the two members for DPEAPPD (JOB07760) and DPEADPE 
(JOB07761), we can determine from the SYSTSIN statement which program is to be run. 

In Example A-1, we see job DPEAPPD runs program PANDEC. 

Example A-1   JCL for DPEAPPD

//DPEAPPD JOB (9060-02292-01-33,LU2),'RUN PANDEC ',
//            MSGCLASS=T,CLASS=G,MSGLEVEL=(1,1)
/*JOBPARM S=MVSF
//*------------------------------------------------------------------
//RUNAPI   EXEC  PGM=IKJEFT01,REGION=0M
//STEPLIB  DD DISP=SHR,DSN=DPLMF.KSA0501X.LOAD
//         DD DISP=SHR,DSN=DPLMF.KSA0501X.LOADD
//         DD DSN=DB2FSYS.SDSNEXIT,DISP=SHR
//         DD DSN=DB2FSYS.SDSNLOAD,DISP=SHR
//SYSTSIN  DD *
DSN SYST(DB2F)
RUN PROGRAM(PANDEC) PLAN(KSA0501V)
END

In Example A-2, we see job DPEAPPE runs program PANENC.

Example A-2   JCL for DPEAPPE

//DPEAPPE JOB (9060-02292-01-33,LU2),'RUN PANENC ',
//            MSGCLASS=T,CLASS=G,MSGLEVEL=(1,1)
/*JOBPARM S=MVSF
//*ABCDE-------------------------------------------------------------
//RUNAPI   EXEC  PGM=IKJEFT01,REGION=0M
//STEPLIB  DD DISP=SHR,DSN=DPLMF.KSA0501X.LOAD
//         DD DISP=SHR,DSN=DPLMF.KSA0501X.LOADD
//         DD DSN=DB2FSYS.SDSNEXIT,DISP=SHR
//         DD DSN=DB2FSYS.SDSNLOAD,DISP=SHR
//SYSTSIN  DD *
DSN SYST(DB2F)
RUN PROGRAM(PANENC) PLAN(KSA0501V)
END

Both programs (PANDEC and PANENC) call the DKMSKSA program. Although the input 
parameters are different, this issue is irrelevant in the context of mapping the key material and 
ICSF services to DKMSKSA.

In Example A-3, we can see PANENC calls DKMSKSA. 

Example A-3   PANENC calls DKMSKSA

BA-CALL-DKMSKSA SECTION.
      *****************************************************************
      * CALL DKMSKSA                                                  *
      *****************************************************************
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           CALL DKMSKSA USING DAPI-KSA-V01
           DISPLAY 'API RETURN-CODE = ' RETURN-CODE

We have two job IDs (JOB07760 and JOB07761) that run program DKMSKSA. Now, we need 
to identify the ICSF SMF record type 82 entries. We want to search for subtypes 31, 40 – 42, 
and 44 – 46 in the timeframe in which the job was run. In our environment, SMF records are 
collected in half-hour intervals.

In Example A-4, the SMF record interval on 05/25/2022 is 07:00:30 - 07:30:30 when 
JOB07760 (DEAPPD) user DPEAP was run. 

Example A-4   SMF record type 82 subtype 31 (hex ‘001F’)

Subtype=001F Crypto Usage Statistics
 Written periodically to record crypto usage counts
 25 May 2022 7:30:30.11
    TME... 00293EA3 DTE... 0122145F SID... MVSF    SSI... 00000000 STY... 001F
    INTVAL_START.. 05/25/2022 07:00:30.026731
    INTVAL_END.... 05/25/2022 07:30:30.111713
    USERID_AS..... DPEAP
    USERID_TK.....
    JOBID......... JOB07760
    JOBNAME....... DPEAPPD
    JOBNAME2......
    PLEXNAME...... MVSFPLEX
    DOMAIN........ 0
    ENG...CARD...7C01/93AACJPJ... 5
    ENG...CARD...7C03/93AACJN6... 5
    ALG...DES112..... 10
    SRV...CSFENC..... 10

In JOB07761 (DEAPPE), user DPEAP was run at the same time as JOB07760 (see 
Example A-5).

Example A-5   SMF record type 82 subtype 31 (hex ‘001F’)

Subtype=001F Crypto Usage Statistics
 Written periodically to record crypto usage counts
 25 May 2022 7:30:30.11
    TME... 00293EA3 DTE... 0122145F SID... MVSF    SSI... 00000000 STY... 001F
    INTVAL_START.. 05/25/2022 07:00:30.026731
    INTVAL_END.... 05/25/2022 07:30:30.111713
    USERID_AS..... DPEAP
    USERID_TK.....
    JOBID......... JOB07761
    JOBNAME....... DPEAPPE
    JOBNAME2......
    PLEXNAME...... MVSFPLEX
    DOMAIN........ 0
    ENG...CARD...7C01/93AACJPJ... 5
    ENG...CARD...7C03/93AACJN6... 5
    ALG...DES112..... 10
    SRV...CSFENC..... 10
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The information in the different subtypes varies. Subtypes 31 and 40 – 42 all contain job 
name and user ID; sub-types 44 – 46 are accumulated over user ID and key ID. For the ICSF 
service that is called CSFENC, we must find a subtype 44 (hex ‘002C’) that maps to CSFENC 
for user DPEAP over the relevant period. 

The usage count in subtype 44 records might be lager than identified in the subtype 31 
records. In Example A-6, we can see a record that has 20 calls to CSFENC for user DPEAP 
in the relevant period of our application. This result corresponds with the two usage statistics 
records in which the two jobs in Example A-4 and Example A-5 had 10 calls to CSFENC 
each. 

In some calls that were made to ICSF, the key label might not be present; rather, the key 
fingerprint or key check value is present to help identify a key. 

Example A-6   Subtype 44 key usage event 

Subtype=002C CCA Symmetric Key Usage Event
 Written for usage events related to symmetric CCA tokens
 25 May 2022 11:02:46.08
    TME... 003CADA0 DTE... 0122145F SID... MVSF    SSI... 00000000 STY... 002C
    STOD.. 05/25/2022 05:00:48.402960
    ETOD.. 05/25/2022 11:02:45.849556
    SRV... CSFENC
    USGC.. 20
    LBL... VDEKDESW3.00.500000.203704.IX0001                               DATA
    TOKFMT Fixed
    KALG.. DES
    KSEC.. Wrapped by MK
    CV.... '00007D0003600081'x (DATA*)
    TIV... 'C97A80A9'x
    KFP... 010105D5B74D
           ENCZ.. 'D5B74D'x
 End User Identity...
    USRI.. DPEAP
Appendix A. Finding cryptographic attributes 129



A key usage event record is available that relates to two job executions. The key label is 
identified as VDEKDESW3.00.500000.203704.IX0001. The key label and details can also be 
found in the IBM CAT GUI (see Figure A-7).

Figure A-7   Key label and details

A.3.2  Examples of finding key lifecycle events

Starting from the SDSF job listing that is shown in Figure A-6 on page 126, we use job ID 
JOB07756 as an example for cryptographic usage and key lifecycle events. For this example, 
we correlate SMF record type 82 subtypes 31 and 40. 

JOB07756 is run by using the JCL member DPEAPDER (see Example A-7). Here, we find 
that program DKMSKSA calls DERKEYS.

Example A-7   JCL for DPEAPDER

//DPEAPDER JOB (9060-02292-01-33,LU2),'TEST DERKEYS',
//            MSGCLASS=T,CLASS=G,MSGLEVEL=(1,1)
/*JOBPARM S=MVSF
//RUNAPI   EXEC  PGM=IKJEFT01,REGION=0M
//STEPLIB  DD DISP=SHR,DSN=DPLMF.KSA0501X.LOAD
//         DD DISP=SHR,DSN=DPLMF.KSA0501X.LOADD
//         DD DSN=DB2FSYS.SDSNEXIT,DISP=SHR
//         DD DSN=DB2FSYS.SDSNLOAD,DISP=SHR
//SYSTSIN  DD *
DSN SYST(DB2F)
RUN PROGRAM(DERKEYS) PLAN(KSA0501V)
END
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For JOB07756 (DEAPDER, user DPEAP), we see in Example A-8 that the record covers the 
interval of 05/25/2022, 07:00:30 - 07:30:30.

Example A-8   SMF record type 82 subtype 31 (hex ‘001F’)

Subtype=001F Crypto Usage Statistics
 Written periodically to record crypto usage counts
 25 May 2022 7:30:30.11
    TME... 00293EA3 DTE... 0122145F SID... MVSF    SSI... 00000000 STY... 001F
    INTVAL_START.. 05/25/2022 07:00:30.026731
    INTVAL_END.... 05/25/2022 07:30:30.111713
    USERID_AS..... DPEAP
    USERID_TK.....
    JOBID......... JOB07756
    JOBNAME....... DPEAPDER
    JOBNAME2......
    PLEXNAME...... MVSFPLEX
    DOMAIN........ 0
    ENG...CARD...7C01/93AACJPJ... 20
    ENG...CARD...7C03/93AACJN6... 21
    ENG...CPACF... 1
    ALG...DES112..... 7
    ALG...DES168..... 51
    ALG...SHA1....... 1
    SRV...CSFKTB..... 8
    SRV...CSFOWH..... 1
    SRV...CSFDKG..... 8
    SRV...CSFRKX..... 17

Among the ICSF services called in this job, CSFRKX is called 17 times during the execution. 
CSFRKX triggers a key lifecycle event, in this case subtype 40 (hex ‘0028’) records are 
generated. These records are written shortly after the call occurs and is not an aggregated 
record as with the key usage event records. We can then search for a subtype 40 records in 
the timeframe of the job execution and for the job name DPEAPDER (see Example A-9). 

Example A-9   SMF record type 82 subtype 40 (hex ‘0028’)

Subtype=0028 CCA Symmetric Key Lifecycle Event
 Written for lifecycle events related to symmetric CCA tokens
 25 May 2022 7:01:41.30
    TME... 00269B52 DTE... 0122145F SID... MVSF    SSI... 00000000 STY... 0028
    KEV... Key Exported
    SRV... CSFRKX
    LBL... VZMKDES.00.3000                                                 

EXPORTER
    KFP... 01010562C123
           ENCZ.. '62C123'x
    TOKFMT Fixed
    KALG.. DES
    KSEC.. Wrapped by MK
    CV.... '00417E0003600081'x (EXPORTER/OKEYXLAT)
    TIV... '384479E0'x
 ICSF Server Identity...
    USRI.. CSF00000
    GRPN.. CC
    JBN... CSF
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    RST... 7:35:21.23
    RSD... 24 May 2022
    SUID.. 4040404040404040
 End User Identity...
    USRI.. DPEAP
    GRPN.. DP
    JBN... DPEAPDER
    RST... 7:01:41.18
    RSD... 25 May 2022
    SUID.. 4040404040404040

The key label in this case is identified as VZMKDES.00.3000 and can be found in IBM CAT, as 
shown in Figure A-8.

Figure A-8   IBM CAT - key label and details

A.3.3  Summary

We started with an ADDI scan of programs, DKMSKSA and DKMSRKX. Then, we identified 
two ICSF service calls, the jobs that performed them, and the cryptographic keys that were 
used in the ICSF service calls and key lifecycle events. 

Searching through ICSF SMF records and SDSF job listings can be a significant undertaking 
and time consuming, depending on the use of cryptographic functions. A deep understanding 
of your JCL, applications, and programs is essential.

In addition, ICSF SMF records are not always written at the same time. In our environment, 
SMF type record 82 subtype 31 are written twice every hour (at top and bottom of the hour), 
and subtypes 40 – 42 are written as they occur. SMF record type 82 subtypes 44 – 46 are 
written at six-hour intervals, beginning at the time ICSF is started. The intervals at which the 
SMF records are written must be considered when identifying application and program use of 
ICSF service calls and their associated cryptographic material. 
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Appendix B. Generating quantum-safe keys 

The examples in this appendix are REXX executables that can be used to generate 
quantum-safe keys that use CCA and PKCS#11.

This appendix includes the following topics:

� B.1, “CCA AES 256-bit key generation REXX sample” on page 134
� B.2, “PKCS #11 AES 256-bit key generation REXX sample” on page 137
� B.3, “CCA CRYSTALS-Dilithium key pair generation REXX sample” on page 139
� B.4, “PKCS #11 CRYSTALS-Dilithium key pair generation REXX sample” on page 142
� B.5, “CCA CRYSTALS-Kyber key pair generation REXX sample” on page 144
� B.6, “PKCS #11 CRYSTALS-Kyber key pair generation REXX sample” on page 147
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B.1  CCA AES 256-bit key generation REXX sample

A CCA AES 256-bit key generation REXX sample is shown in Example B-1.

Example B-1   CCA AES 256-bit key generation REXX sample

/* rexx */
/*-------------------------------------------------------------------*/
/* Generate a secure CCA 256-bit AES CIPHER key                      */
/*-------------------------------------------------------------------*/

/* expected results */
ExpRC = '00000000'x ;
ExpRS = '00000000'x ;

/*-------------------------------------------------------------------*/
/* Build skeleton token with key usage and key management            */
/*-------------------------------------------------------------------*/

KTB2_rule_array = 'INTERNAL' ||,
                  'AES     ' ||,
                  'NO-KEY  ' ||,
                  'CIPHER  ' ||,
                  'ENCRYPT ' ||,
                  'DECRYPT ' ||,
                  'C-XLATE ' ||,
                  'ANY-MODE' ||,
                  'NOEX-SYM' ||,
                  'NOEX-RAW' ||,
                  'NOEXUASY' ||,
                  'NOEXAASY' ||,
                  'NOEX-DES' ||,
                  'NOEX-AES' ||,
                  'NOEX-RSA' ||,
                  'XPRTCPAC'

call CSNBKTB2

/*-------------------------------------------------------------------*/
/* Generate the AES key using the skeleton token from KTB2           */
/*-------------------------------------------------------------------*/
KGN2_Rule_Array = 'AES     ' ||,
                  'OP      '
KGN2_clear_key_Bit_Len = '00000100'x  /* 256-bit */
KGN2_key_Type_1 = 'TOKEN   '
KGN2_key_Type_2 = ''
KGN2_gen_key_1_Len     = '000002D5'x
KGN2_gen_key_1 = left(KTB2_target_key_token,c2d(KGN2_gen_key_1_Len))

call CSNBKGN2

exit
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/* --------------------------------------------------------------- */
/* CSNBKTB2 - Key Token Build2                                     */
/*                                                                 */
/* Builds a variable-length AES skeleton token.                    */
/*                                                                 */
/* See the ICSF Application Programmer's Guide for more details.   */
/* --------------------------------------------------------------- */
CSNBKTB2:

  KTB2_rc                = 'ffffffff'x ;
  KTB2_rs                = 'ffffffff'x ;
  KTB2_exit_Length       = '00000000'x ;
  KTB2_exit_Data         = '' ;
  KTB2_key_name_len      = '00000000'x ;
  KTB2_key_name          = '';
  KTB2_user_data_Len     = '00000000'x ;
  KTB2_user_data         = '';
  KTB2_token_data_Len    = '00000000'x ;
  KTB2_token_data        = '';
  KTB2_clear_key         = '';
  KTB2_service_data      = '';
  KTB2_service_data_Len  = D2C(length(KTB2_service_data),4) ;
  KTB2_target_key_token_Len = d2c(725,4) ;
  KTB2_target_key_token  = copies('00'x,c2d(KTB2_target_key_token_Len)) ;
  KTB2_clear_key_bit_Len = '00000000'x;
  KTB2_Rule_count        = D2C(length(KTB2_rule_array)/8,4) ;

 address linkpgm 'CSNBKTB2'                                ,
                 'KTB2_rc'               'KTB2_rs'         ,
                 'KTB2_exit_Length'      'KTB2_exit_Data'  ,
                 'KTB2_rule_count'       'KTB2_rule_array' ,
                 'KTB2_clear_key_bit_Len'                  ,
                 'KTB2_clear_key'                          ,
                 'KTB2_key_name_Len'     'KTB2_key_name'   ,
                 'KTB2_user_data_Len'    'KTB2_user_data'  ,
                 'KTB2_token_data_Len'   'KTB2_token_data' ,
                 'KTB2_service_data_Len' 'KTB2_service_data' ,
                 'KTB2_target_key_token_Len' 'KTB2_target_key_token' ;

  KTB2_target_key_token = ,
     substr(KTB2_target_key_token,1,c2d(KTB2_target_key_token_len))

 If (KTB2_RC <> ExpRC) | (KTB2_RS <> ExpRS) then
   do;
      say 'KTB2 failed : rc =' c2x(KTB2_RC) 'rs =' c2x(KTB2_RS)
   end;
 else
   say 'KTB2 successful : rc =' c2x(KTB2_RC) 'rs =' c2x(KTB2_RS)

return
/* --------------------------------------------------------------- */
/* CSNBKGN - Key Generate                                          */
/*                                                                 */
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/* Generates either one or two DES or AES keys encrypted under a   */
/* master key (internal form) or KEK (external form).              */
/*                                                                 */
/* See the ICSF Application Programmer's Guide for more details.   */
/* --------------------------------------------------------------- */
CSNBKGN2:

 KGN2_rc                = 'ffffffff'x ;
 KGN2_rs                = 'ffffffff'x ;
 KGN2_Exit_Length       = '00000000'x ;
 KGN2_Exit_Data         = '' ;
 KGN2_Rule_count        = D2C(length(KGN2_rule_array)/8,4)
 KGN2_key_Name_1_Len    = '00000000'x ;
 KGN2_key_Name_1        = '';
 KGN2_key_Name_2_Len    = '00000000'x ;
 KGN2_key_Name_2        = '';
 KGN2_user_data_1_Len   = '00000000'x ;
 KGN2_user_data_1       = '';
 KGN2_user_data_2_Len   = '00000000'x ;
 KGN2_user_data_2       = '';
 KGN2_KEK_1_Len         = '00000000'x ;
 KGN2_KEK_1             = '';
 KGN2_KEK_2_Len         = '00000000'x;
 KGN2_KEK_2             = '';
 KGN2_gen_key_2_Len     = '00000000'x;
 KGN2_gen_key_2         = '';

  address linkpgm 'CSNBKGN2'                        ,
                 'KGN2_rc'              'KGN2_rs'     ,
                 'KGN2_Exit_Length'     'KGN2_Exit_Data'   ,
                 'KGN2_Rule_Count'      'KGN2_Rule_Array' ,
                 'KGN2_clear_key_Bit_Len'          ,
                 'KGN2_key_Type_1'      'KGN2_key_Type_2' ,
                 'KGN2_key_Name_1_Len'  'KGN2_key_Name_1' ,
                 'KGN2_key_Name_2_Len'  'KGN2_key_Name_2' ,
                 'KGN2_user_data_1_Len' 'KGN2_user_data_1' ,
                 'KGN2_user_data_2_Len' 'KGN2_user_data_2' ,
                 'KGN2_KEK_1_Len'       'KGN2_KEK_1'  ,
                 'KGN2_KEK_2_Len'       'KGN2_KEK_2'  ,
                 'KGN2_gen_key_1_Len'   'KGN2_gen_key_1' ,
                 'KGN2_gen_key_2_Len'   'KGN2_gen_key_2' ;

  If (KGN2_RC <> ExpRC) | (KGN2_RS <> ExpRS) then
   do;
    say 'KGN2 failed: rc =' c2x(KGN2_RC) 'rs =' c2x(KGN2_RS)
   end;
  else
    say 'KGN2 successful: rc =' c2x(KGN2_RC) 'rs =' c2x(KGN2_RS)

 KGN2_gen_key_1 = substr(KGN2_gen_key_1,1,c2d(KGN2_gen_key_1_len))
 KGN2_gen_key_2 = substr(KGN2_gen_key_2,1,c2d(KGN2_gen_key_2_len))

Return
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B.2  PKCS #11 AES 256-bit key generation REXX sample

A PKCS #11 AES 256-bit key generation REXX sample is shown in Example B-2.

Example B-2   PKCS #11 AES 256-bit key generation REXX sample

/*rexx*/
/*-------------------------------------------------------------------*/
/* Generate a secure 256-bit PKCS #11 AES key                        */
/*-------------------------------------------------------------------*/
Call TCSetup

/* expected results */
ExpRC = '00000000'x ;
ExpRS = '00000000'x ;

/*-------------------------------------------------------------------*/
/* Generate the AES key using the attribute list                     */
/*-------------------------------------------------------------------*/

 GSK_Handle      = Left('QSAFE.TEST.TOKEN',44) ;
 GSK_AttrList    = '0007'x ||,                  /* number attributes */
  CKA_CLASS        ||'0004'x || CKO_SECRET_KEY  ||,
  CKA_KEY_TYPE     ||'0004'x || CKK_AES         ||,
  CKA_VALUE_LEN    ||'0004'x || '00000020'x     ||,   /* AES 256-bit */
  CKA_TOKEN        ||'0001'x || CK_TRUE         ||,
  CKA_IBM_SECURE   ||'0001'x || CK_TRUE         ||,
  CKA_ENCRYPT      ||'0001'x || CK_TRUE         ||,
  CKA_DECRYPT      ||'0001'x || CK_TRUE

 Call CSFPGSK;

exit
/* --------------------------------------------------------------- */
/* PKCS #11 Generate Secret Key                                    */
/* Use the generate secret key callable service to generate a      */
/* secret key or set of domain parameters.                         */
/*                                                                 */
/* See the ICSF Application Programmer's Guide for more details.   */
/* --------------------------------------------------------------- */
 CSFPGSK:
  GSK_RC           = 'FFFFFFFF'x ;
  GSK_RS           = 'FFFFFFFF'x ;
  GSK_Exit_Length  = '00000000'x ;
  GSK_Exit_Data    = '' ;
  GSK_Rule_Count        = '00000001'x;
  GSK_Rule_Array        = 'KEY     ';
  GSK_Parms_List        = ''
  GSK_Parms_List_Length = '00000000'x

  GSK_AttrListLength   = D2C( Length( GSK_AttrList ),4);
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   /* call GSK */
 address linkpgm 'CSFPGSK'                                   ,
                'GSK_RC'                'GSK_RS'            ,
                'GSK_Exit_Length'       'GSK_Exit_Data'     ,
                'GSK_Handle'                                ,
                'GSK_Rule_Count'        'GSK_Rule_Array'    ,
                'GSK_AttrListLength'    'GSK_AttrList'      ,
                'GSK_Parms_List_Length' 'GSK_Parms_List'    ;

If (GSK_RC <> ExpRC) | (GSK_RS <> ExpRS) then
  say 'GSK failed: rc =' c2x(GSK_rc) 'rs =' c2x(GSK_rs) ;
else
  say 'GSK successful : rc =' c2x(GSK_rc) 'rs =' c2x(GSK_rs) ;

return

/* --------------------------------------------------------------- */
/*                                                                 */
/* --------------------------------------------------------------- */
TCSetup:

CKK_AES               = '0000001F'X

CKO_SECRET_KEY        = '00000004'X

CKA_CLASS             = '00000000'X
CKA_TOKEN             = '00000001'X
CKA_IBM_SECURE        = '80000006'X
CKA_KEY_TYPE          = '00000100'X
CKA_ENCRYPT           = '00000104'X;
CKA_DECRYPT           = '00000105'X;
CKA_VALUE_LEN         = '00000161'X

CK_TRUE               = '01'x
CK_FALSE              = '00'x

Return

EXIT;
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B.3  CCA CRYSTALS-Dilithium key pair generation REXX 
sample

A CCA CRYSTALS-Dilithium key pair generation REXX sample is shown in Example B-3.

Example B-3   CCA CRYSTALS-Dilithium key pair generation REXX sample

/* Rexx */

/*-------------------------------------------------------------------*/
/* Generate a secure CRYSTALS-Dilithium CCA key pair                 */
/*-------------------------------------------------------------------*/

 /* expected results */
 ExpRc = '00000000'x
 ExpRs = '00000000'x

/*-------------------------------------------------------------------*/
/* Build skeleton token with key usage                               */
/*-------------------------------------------------------------------*/
 PKB_Rule_Count   = '00000002'x ;
 PKB_Rule_Array   = 'QSA-PAIR' ||,
                    'U-DIGSIG'

 /* CRYSTALS-Dilithium 87 Round 3 KVS */
 PKB_KVS    = '03'x   ||, /* Alg Id */
              '00'x   ||, /* clear key format */
              '0807'x ||, /* Alg param */
              '0000'x ||, /* clear key len */
              '0000'x     /* Reserved */

 /* CRYSTALS-Dilithium 65 Round 3 KVS */
 /*
 PKB_KVS    = '03'x   ||, /* Alg Id */
              '00'x   ||, /* clear key format */
              '0605'x ||, /* Alg param */
              '0000'x ||, /* clear key len */
              '0000'x     /* Reserved */
 */
 call CSNDPKB

/*-------------------------------------------------------------------*/
/* Generate the Dilithium key pair using the skeleton token from PKB */
/*-------------------------------------------------------------------*/
 PKG_Rule_Array = 'MASTER  '
 PKG_Skeleton_Key        = PKB_Token;
 PKG_Skeleton_Key_length = PKB_Token_length;

 call CSNDPKG

 Exit
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/*------------------------------------------------------------------*/
/* PKA Key Token Build - used to create PKA key tokens.             */
/*                                                                  */
/* See the ICSF Application Programmer's Guide for more details.    */
/*------------------------------------------------------------------*/
CSNDPKB:

/* initialize parameter list */
PKB_Rc           = 'FFFFFFFF'x ;
PKB_Rs           = 'FFFFFFFF'x ;
Exit_Length      = '00000000'x ;
Exit_Data        = '' ;
PKB_KVS_Length   = d2c(length(PKB_KVS),4) ;
PKB_UAD_Length   = '00000000'x ;
PKB_UAD          = ''
PKB_PrivName_Len = '00000000'x ;
PKB_PrivName     = ''
Reserved2_Length = '00000000'x ; Reserved2 = '' ;
Reserved3_Length = '00000000'x ; Reserved3 = '' ;
Reserved4_Length = '00000000'x ; Reserved4 = '' ;
Reserved5_Length = '00000000'x ; Reserved5 = '' ;
PKB_Token_Length = d2c(8000,4) ;
PKB_Token        = copies('00'x,8000) ;

/* call CSNDPKB */
address linkpgm 'CSNDPKB'                           ,
                'PKB_Rc'           'PKB_Rs'         ,
                'Exit_Length'      'Exit_Data'      ,
                'PKB_Rule_Count'   'PKB_Rule_Array' ,
                'PKB_KVS_Length'   'PKB_KVS'        ,
                'PKB_PrivName_Len' 'PKB_PrivName'   ,
                'PKB_UAD_Length'   'PKB_UAD'        ,
                'Reserved2_Length' 'Reserved2'      ,
                'Reserved3_Length' 'Reserved3'      ,
                'Reserved4_Length' 'Reserved4'      ,
                'Reserved5_Length' 'Reserved5'      ,
                'PKB_Token_Length' 'PKB_Token'      ;

if (PKB_Rc \= ExpRc | PKB_Rs \= ExpRs) then
  say 'PKB failed: rc =' c2x(PKB_Rc) 'rs =' c2x(PKB_Rs) ;
else
 do ;
  say 'PKB sucessful: rc =' c2x(PKB_Rc) 'rs =' c2x(PKB_Rs) ;
  PKB_Token = substr(PKB_Token,1,c2d(PKB_Token_Length)) ;
 end

 return

/* --------------------------------------------------------------- */
/* PKA Key Generate  - Used to generate PKA key pairs              */
/*                                                                 */
/* See the ICSF Application Programmer's Guide for more details.   */
/* --------------------------------------------------------------- */
CSNDPKG:
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 PKG_rc          = 'FFFFFFFF'x ;
 PKG_rs          = 'FFFFFFFF'x ;
 PKG_Exit_length = '00000000'x ;
 PKG_Exit_Data   = '' ;
 PKG_Rule_count          = d2c( length(PKG_Rule_Array)/8,4 )
 PKG_Token_length        = '00001F40'x ;
 PKG_Token               = copies('00'x,c2d(PKG_token_length)) ;
 PKG_Regen_data = ''
 PKG_Regen_Data_length = d2c( length(PKG_Regen_data),4 )
 PKG_Transport_Key_Id = ''

  address linkpgm 'CSNDPKG' ,
                 'PKG_rc'                  'PKG_rs' ,
                 'PKG_Exit_length'         'PKG_Exit_Data' ,
                 'PKG_Rule_Count'          'PKG_Rule_Array' ,
                 'PKG_Regen_Data_length'   'PKG_Regen_Data' ,
                 'PKG_Skeleton_Key_length' 'PKG_Skeleton_Key' ,
                 'PKG_Transport_Key_Id'     ,
                 'PKG_Token_length'        'PKG_Token' ;

if (PKG_rc \= ExpRc | PKG_rs \= ExpRs) then
  say 'PKG failed: rc =' c2x(PKG_rc) 'rs =' c2x(PKG_rs)
else
 Do;
  say 'PKG  successful : rc =' c2x(PKG_rc) 'rs =' c2x(PKG_rs) ;
  PKG_Token = substr(PKG_Token,1,c2d(PKG_Token_length)) ;
 End;

Return
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B.4  PKCS #11 CRYSTALS-Dilithium key pair generation REXX 
sample

A PKCS #11 CRYSTALS-Dilithium key pair generation REXX sample is shown in 
Example B-4.

Example B-4   PKCS #11 CRYSTALS-Dilithium key pair generation REXX sample

/* Rexx */

/*-------------------------------------------------------------------*/
/* Generate a secure PKCS #11 Dilithium key pair                     */
/*-------------------------------------------------------------------*/

/* expected results */
ExpRC = '00000000'x ;
ExpRS = '00000000'x ;

Call TCSetup

GKP_Handle             = Left('QSAFE.TEST.TOKEN',44)

GKP_PrivKey_Attr_List = '0005'x||,
       CKA_CLASS      ||'0004'x|| CKO_PRIVATE_KEY          ||,
       CKA_KEY_TYPE   ||'0004'x|| CKK_IBM_DILITHIUM        ||,
       CKA_TOKEN      ||'0001'x|| CK_TRUE                  ||,
       CKA_SIGN       ||'0001'x|| CK_TRUE                  ||,
       CKA_IBM_SECURE ||'0001'x|| CK_TRUE

GKP_PubKey_Attr_List = '0005'x||,
       CKA_CLASS              ||'0004'x|| CKO_PUBLIC_KEY    ||,
       CKA_KEY_TYPE           ||'0004'x|| CKK_IBM_DILITHIUM ||,
       CKA_IBM_DILITHIUM_MODE ||'000D'x|| DER_OID_8_7_R3    ||,
       CKA_TOKEN              ||'0001'x|| CK_TRUE           ||,
       CKA_VERIFY             ||'0001'x|| CK_TRUE

Call CSFPGKP;

Exit
/* --------------------------------------------------------------- */
/* PKCS #11 Generate Key Pair                                      */
/* Use the PKCS #11 Generate Key Pair callable service to generate */
/* an RSA, DSA, Elliptic Curve, Diffie-Hellman, Dilithium (LI2) or */
/* Kyber key pair.                                                 */
/*                                                                 */
/* See the ICSF Application Programmer's Guide for more details.   */
/* --------------------------------------------------------------- */
CSFPGKP:
 GKP_RC = 'FFFFFFFF'x
 GKP_RS = 'FFFFFFFF'x
 GKP_Exit_Length = '00000000'x
 GKP_Exit_Data = ''
 GKP_Rule_Count = '00000000'x
 GKP_Rule_Array = ''
 GKP_PubKey_Handle = copies(' ',44)
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 GKP_PrivKey_Handle = copies(' ',44)

 GKP_PubKey_Attr_List_Length = D2C(Length(GKP_PubKey_Attr_List),4)
 GKP_PrivKey_Attr_List_Length = D2C(Length(GKP_PrivKey_Attr_List),4)

 address linkpgm 'CSFPGKP',
                 'GKP_RC' 'GKP_RS',
                 'GKP_Exit_Length' 'GKP_Exit_Data',
                 'GKP_Handle',
                 'GKP_Rule_Count' 'GKP_Rule_Array',
                 'GKP_PubKey_Attr_List_Length',
                 'GKP_PubKey_Attr_List',
                 'GKP_PubKey_Handle',
                 'GKP_PrivKey_Attr_List_Length',
                 'GKP_PrivKey_Attr_List',
                 'GKP_PrivKey_Handle'

   if (GKP_RC \= ExpRC | GKP_RS \= ExpRS) Then
     say 'GKP failed: rc =' c2x(GKP_rc) 'rs =' c2x(GKP_rs) ;
   else
     say 'GKP successful : rc =' c2x(GKP_rc) 'rs =' c2x(GKP_rs) ;

return;

/* --------------------------------------------------------------- */
/*                                                                 */
/* --------------------------------------------------------------- */
TCSetup:

DER_OID_8_7_R3         = '060B2B0601040102820B070807'X

CKK_IBM_DILITHIUM      = '80010023'X

CKO_PUBLIC_KEY         = '00000002'X
CKO_PRIVATE_KEY        = '00000003'X

CKA_IBM_SECURE         = '80000006'X
CKA_KEY_TYPE           = '00000100'X
CKA_CLASS              = '00000000'X
CKA_TOKEN              = '00000001'X
CKA_IBM_DILITHIUM_MODE = '80000010'X
CKA_SIGN               = '00000108'X;
CKA_VERIFY             = '0000010A'X;

CK_TRUE                = '01'x
CK_FALSE               = '00'x
Return

EXIT;
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B.5  CCA CRYSTALS-Kyber key pair generation REXX sample

A CCA CRYSTALS-Kyber key pair generation REXX sample is shown in Example B-5.

Example B-5   CCA CRYSTALS-Kyber key pair generation REXX sample

/* Rexx */

/*-------------------------------------------------------------------*/
/* Generate a secure CRYSTALS-Kyber CCA key pair                     */
/*-------------------------------------------------------------------*/

 /* expected results */
 ExpRc = '00000000'x
 ExpRs = '00000000'x

/*-------------------------------------------------------------------*/
/* Build skeleton token with key usage                               */
/*-------------------------------------------------------------------*/
 PKB_Rule_Count   = '00000003'x ;
 PKB_Rule_Array   = 'QSA-PAIR' ||,
                    'U-KEYENC' ||,
                    'U-DATENC'

 /* CRYSTALS-Kyber 1024 Round 2 KVS */
 PKB_KVS    = '02'x   ||, /* Alg Id */
              '00'x   ||, /* clear key format */
              '1024'x ||, /* Alg param */
              '0000'x ||, /* clear key len */
              '0000'x     /* Reserved */

 call CSNDPKB

/*-------------------------------------------------------------------*/
/* Generate the Kyber key pair using the skeleton token from PKB     */
/*-------------------------------------------------------------------*/
 PKG_Rule_Array = 'MASTER  '
 PKG_Skeleton_Key        = PKB_Token;
 PKG_Skeleton_Key_length = PKB_Token_length;

 call CSNDPKG

 Exit
/*------------------------------------------------------------------*/
/* PKA Key Token Build - used to create PKA key tokens.             */
/*                                                                  */
/* See the ICSF Application Programmer's Guide for more details.    */
/*------------------------------------------------------------------*/
CSNDPKB:

/* initialize parameter list */
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PKB_Rc           = 'FFFFFFFF'x ;
PKB_Rs           = 'FFFFFFFF'x ;
Exit_Length      = '00000000'x ;
Exit_Data        = '' ;
PKB_KVS_Length   = d2c(length(PKB_KVS),4) ;
PKB_UAD_Length   = '00000000'x ;
PKB_UAD          = ''
PKB_PrivName_Len = '00000000'x ;
PKB_PrivName     = ''
Reserved2_Length = '00000000'x ; Reserved2 = '' ;
Reserved3_Length = '00000000'x ; Reserved3 = '' ;
Reserved4_Length = '00000000'x ; Reserved4 = '' ;
Reserved5_Length = '00000000'x ; Reserved5 = '' ;
PKB_Token_Length = d2c(8000,4) ;
PKB_Token        = copies('00'x,8000) ;

/* call CSNDPKB */
address linkpgm 'CSNDPKB'                           ,
                'PKB_Rc'           'PKB_Rs'         ,
                'Exit_Length'      'Exit_Data'      ,
                'PKB_Rule_Count'   'PKB_Rule_Array' ,
                'PKB_KVS_Length'   'PKB_KVS'        ,
                'PKB_PrivName_Len' 'PKB_PrivName'   ,
                'PKB_UAD_Length'   'PKB_UAD'        ,
                'Reserved2_Length' 'Reserved2'      ,
                'Reserved3_Length' 'Reserved3'      ,
                'Reserved4_Length' 'Reserved4'      ,
                'Reserved5_Length' 'Reserved5'      ,
                'PKB_Token_Length' 'PKB_Token'      ;

if (PKB_Rc \= ExpRc | PKB_Rs \= ExpRs) then
  say 'PKB failed: rc =' c2x(PKB_Rc) 'rs =' c2x(PKB_Rs) ;
else
 do ;
  say 'PKB sucessful: rc =' c2x(PKB_Rc) 'rs =' c2x(PKB_Rs) ;
  PKB_Token = substr(PKB_Token,1,c2d(PKB_Token_Length)) ;
 end

 return

/* --------------------------------------------------------------- */
/* PKA Key Generate  - Used to generate PKA key pairs              */
/*                                                                 */
/* See the ICSF Application Programmer's Guide for more details.   */
/* --------------------------------------------------------------- */
CSNDPKG:

 PKG_rc          = 'FFFFFFFF'x ;
 PKG_rs          = 'FFFFFFFF'x ;
 PKG_Exit_length = '00000000'x ;
 PKG_Exit_Data   = '' ;
 PKG_Rule_count          = d2c( length(PKG_Rule_Array)/8,4 )
 PKG_Token_length        = '00001F40'x ;
 PKG_Token               = copies('00'x,c2d(PKG_token_length)) ;
Appendix B. Generating quantum-safe keys 145



 PKG_Regen_data = ''
 PKG_Regen_Data_length = d2c( length(PKG_Regen_data),4 )
 PKG_Transport_Key_Id = ''

  address linkpgm 'CSNDPKG' ,
                 'PKG_rc'                  'PKG_rs' ,
                 'PKG_Exit_length'         'PKG_Exit_Data' ,
                 'PKG_Rule_Count'          'PKG_Rule_Array' ,
                 'PKG_Regen_Data_length'   'PKG_Regen_Data' ,
                 'PKG_Skeleton_Key_length' 'PKG_Skeleton_Key' ,
                 'PKG_Transport_Key_Id'     ,
                 'PKG_Token_length'        'PKG_Token' ;

if (PKG_rc \= ExpRc | PKG_rs \= ExpRs) then
  say 'PKG failed: rc =' c2x(PKG_rc) 'rs =' c2x(PKG_rs)
else
 Do;
  say 'PKG  successful : rc =' c2x(PKG_rc) 'rs =' c2x(PKG_rs) ;
  PKG_Token = substr(PKG_Token,1,c2d(PKG_Token_length)) ;
 End;

Return
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B.6  PKCS #11 CRYSTALS-Kyber key pair generation REXX 
sample

A PKCS #11 CRYSTALS-Kyber key pair generation REXX sample is shown in Example B-6.

Example B-6   PKCS #11 CRYSTALS-Kyber key pair generation REXX sample

/* Rexx */

Call TCSetup

/*-------------------------------------------------------------------*/
/* Generate a secure PKCS #11 Kyber key pair                         */
/*-------------------------------------------------------------------*/

/* expected results */
ExpRC = '00000000'x ;
ExpRS = '00000000'x ;

Call TCSETUP

GKP_Handle             = Left('QSAFE.TEST.TOKEN',44)

GKP_PrivKey_Attr_List = '0007'x||,
       CKA_CLASS      ||'0004'x|| CKO_PRIVATE_KEY          ||,
       CKA_KEY_TYPE   ||'0004'x|| CKK_IBM_KYBER            ||,
       CKA_TOKEN      ||'0001'x|| CK_TRUE                  ||,
       CKA_DERIVE     ||'0001'x|| CK_TRUE                  ||,
       CKA_DECRYPT    ||'0001'x|| CK_TRUE                  ||,
       CKA_UNWRAP     ||'0001'x|| CK_TRUE                  ||,
       CKA_IBM_SECURE ||'0001'x|| CK_TRUE

GKP_PubKey_Attr_List = '0007'x||,
       CKA_CLASS              ||'0004'x|| CKO_PUBLIC_KEY    ||,
       CKA_KEY_TYPE           ||'0004'x|| CKK_IBM_KYBER     ||,
       CKA_IBM_KYBER_MODE     ||'000D'x|| DER_OID_KYBER_1024_R2   ||,
       CKA_TOKEN              ||'0001'x|| CK_TRUE           ||,
       CKA_WRAP               ||'0001'x|| CK_TRUE           ||,
       CKA_DERIVE             ||'0001'x|| CK_TRUE           ||,
       CKA_ENCRYPT            ||'0001'x|| CK_TRUE

Call CSFPGKP;

Exit
/* --------------------------------------------------------------- */
/* PKCS #11 Generate Key Pair                                      */
/* Use the PKCS #11 Generate Key Pair callable service to generate */
/* an RSA, DSA, Elliptic Curve, Diffie-Hellman, Dilithium (LI2) or */
/* Kyber key pair.                                                 */
/*                                                                 */
/* See the ICSF Application Programmer's Guide for more details.   */
/* --------------------------------------------------------------- */
CSFPGKP:
 GKP_RC = 'FFFFFFFF'x
 GKP_RS = 'FFFFFFFF'x
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 GKP_Exit_Length = '00000000'x
 GKP_Exit_Data = ''
 GKP_Rule_Count = '00000000'x
 GKP_Rule_Array = ''
 GKP_PubKey_Handle = copies(' ',44)
 GKP_PrivKey_Handle = copies(' ',44)

 GKP_PubKey_Attr_List_Length = D2C(Length(GKP_PubKey_Attr_List),4)
 GKP_PrivKey_Attr_List_Length = D2C(Length(GKP_PrivKey_Attr_List),4)

 address linkpgm 'CSFPGKP',
                 'GKP_RC' 'GKP_RS',
                 'GKP_Exit_Length' 'GKP_Exit_Data',
                 'GKP_Handle',
                 'GKP_Rule_Count' 'GKP_Rule_Array',
                 'GKP_PubKey_Attr_List_Length',
                 'GKP_PubKey_Attr_List',
                 'GKP_PubKey_Handle',
                 'GKP_PrivKey_Attr_List_Length',
                 'GKP_PrivKey_Attr_List',
                 'GKP_PrivKey_Handle'

   if (GKP_RC \= ExpRC | GKP_RS \= ExpRS) Then
     say 'GKP failed: rc =' c2x(GKP_rc) 'rs =' c2x(GKP_rs) ;
   else
     say 'GKP successful : rc =' c2x(GKP_rc) 'rs =' c2x(GKP_rs) ;

return;

/* --------------------------------------------------------------- */
/*                                                                 */
/* --------------------------------------------------------------- */
TCSetup:

DER_OID_KYBER_1024_R2 = '060B2B0601040102820B050404'X;

CKK_IBM_KYBER         = '80010024'X;

CKO_PUBLIC_KEY        = '00000002'X
CKO_PRIVATE_KEY       = '00000003'X

CKA_IBM_SECURE        = '80000006'X
CKA_KEY_TYPE          = '00000100'X
CKA_CLASS             = '00000000'X
CKA_TOKEN             = '00000001'X
CKA_IBM_KYBER_MODE    = '8000000E'X;
CKA_ENCRYPT           = '00000104'X;
CKA_DECRYPT           = '00000105'X;
CKA_WRAP              = '00000106'X;
CKA_UNWRAP            = '00000107'X;
CKA_DERIVE            = '0000010C'X;

CK_TRUE               = '01'x
CK_FALSE              = '00'x
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Return

EXIT;
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Appendix C. Translating plain text into cipher 
text

The examples in this appendix are REXX executables that can be used to translate plain text 
into cipher text by using CCA and PKCS#11. 

This appendix includes the following topics:

� C.1, “CCA ciphertext translation REXX sample” on page 152
� C.2, “PKCS #11 ciphertext translation REXX sample” on page 154

C

© Copyright IBM Corp. 2022. 151



C.1  CCA ciphertext translation REXX sample

A CCA ciphertext translation REXX sample is shown in Example C-1.

Example C-1   CCA ciphertext translation from DES to AES REXX sample 

/* Rexx */

/*-------------------------------------------------------------------*/
/* Translate existing ciphertext to an AES 256-bit key               */
/*-------------------------------------------------------------------*/

 /* expected results */
 ExpRc = '00000000'x
 ExpRs = '00000000'x

 /*------------------------------------------------------------------*/
 /* Call CSNBCTT2 to translate the existing ciphertext to AES        */
 /*------------------------------------------------------------------*/
 CTT2_Rule_Count     = '00000004'x
 CTT2_rule_array     = 'I-CBC   '||'O-CBC   '||'IKEY-DES'||'OKEY-AES';
 CTT2_cipher_text_in = 'E7861BBEEA363B3C40168B3174C15D31'x ;

 /* Pass either the tokens or key labels of the encryption keys.     */
 CTT2_key_ID_in   = left('DATAENC#CTT2#DES#CIPHER',64)
 CTT2_key_ID_out  = left('DATAENC#CTT2#AES256#CIPHER',64) ;

 Call CSNBCTT2

 exit
/*-------------------------------------------------------------------*/
/* CipherText Translate2                                             */
/*                                                                   */
/* This callable service deciphers encrypted data (ciphertext) under */
/* one cipher text translation key and reenciphers it under another  */
/* cipher text translation key without having the data appear in the */
/* clear outside the cryptographic coprocessor.                      */
/*                                                                   */
/* See the ICSF Application Programmer's Guide for more details.     */
/*-------------------------------------------------------------------*/
CSNBCTT2:

  CTT2_rc                   = 'FFFFFFFF'x ;
  CTT2_rs                   = 'FFFFFFFF'x ;
  CTT2_Exit_Len             = '00000000'x ;
  CTT2_Exit_Data            = '' ;
  CTT2_IV_in_len            = '00000008'X
  CTT2_IV_in                = '0000000000000000'X
  CTT2_cipher_text_in_len   = d2c(length(CTT2_cipher_text_in),4)
  CTT2_chaining_vector_len  = '00000080'X
  CTT2_chaining_vector      = copies('00'x,128)
  CTT2_IV_out_len           = '00000010'X
  CTT2_IV_out               = '0000000000000000'X
  CTT2_rsv1_len             = '00000000'x
  CTT2_rsv1                 = ''
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  CTT2_rsv2_len             = '00000000'x
  CTT2_rsv2                 = ''
  CTT2_key_ID_in_len        = '00000040'x
  CTT2_key_ID_out_len       = '00000040'x
  CTT2_cipher_text_out_len  = d2c(length(CTT2_cipher_text_in),4)
  CTT2_cipher_text_out      = copies('00'x,c2d(CTT2_cipher_text_out_len))

  address linkpgm 'CSNBCTT2'                                      ,
                  'CTT2_rc'                  'CTT2_rs'            ,
                  'CTT2_Exit_Len'            'CTT2_Exit_Data'     ,
                  'CTT2_Rule_Count'          'CTT2_Rule_array'    ,
                  'CTT2_key_ID_in_len'       'CTT2_key_ID_in'     ,
                  'CTT2_IV_in_len'           'CTT2_IV_in'         ,
                  'CTT2_cipher_text_in_len'  'CTT2_cipher_text_in',
                  'CTT2_chaining_vector_len' 'CTT2_chaining_vector',
                  'CTT2_key_ID_out_len'      'CTT2_key_ID_out'     ,
                  'CTT2_IV_out_len'          'CTT2_IV_out'         ,
                  'CTT2_cipher_text_out_len' 'CTT2_cipher_text_out',
                  'CTT2_rsv1_len'            'CTT2_rsv1'           ,
                  'CTT2_rsv2_len'            'CTT2_rsv2'           ;

  if (CTT2_rc \= ExpRc | CTT2_rs \= ExpRs) then
   say 'CTT2 failed: rc=' c2x(CTT2_rc) 'rs =' c2x(CTT2_rs) ;
  else
   say 'CTT2 successful: rc=' c2x(CTT2_rc) 'rs =' c2x(CTT2_rs) ;

 return;
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C.2  PKCS #11 ciphertext translation REXX sample

A PKCS #11 ciphertext translation REXX sample is shown in Example C-2.

Example C-2   PKCS #11 ciphertext translation from DES to AES REXX sample

/* rexx */

/*-------------------------------------------------------------------*/
/* Translate existing ciphertext to an AES 256-bit key               */
/*-------------------------------------------------------------------*/

 /* expected results */
 ExpRC = '00000000'x ;
 ExpRS = '00000000'x ;

 SKR_Rule_Array = 'D-CBCPAD' || 'E-CBCPAD'

 /*-------------------------------------------------------------------*/
 /* Pass existing ciphertext and set IV according to the decryption   */
 /* key. For DES keys, IV length is 8.                                */
 /*-------------------------------------------------------------------*/
 SKR_dec_iv_length     = '00000008'x;
 SKR_dec_iv            = copies('00'x,c2d(SKR_dec_iv_length) )
 SKR_dec_text   =,
 '3AE0F4D65E911F061FED6FEB0CB84D6996A5623CADED94AEA3B8E2923F04E927'x ||,
 'DADFD96CCDDB5497442F6A75C82041AFE418D930AF4DE8B732A4D86C1D3F60EC'x ||,
 '530BB9336A042B2A398FE650B8E38D2451D2427B904ED7B1'x
 SKR_dec_text_length  = d2c(length(SKR_dec_text),4)

 /*-------------------------------------------------------------------*/
 /* Set encryption IV length to 16 for AES                            */
 /*-------------------------------------------------------------------*/
 SKR_enc_iv_length = '00000010'x
 SKR_enc_iv = copies('00'x,c2d(SKR_enc_iv_length))

 /* Secure DES3 handle */
 SKR_dec_handle = 'QSAFE.TEST.TOKEN                00000001Y'
 /* Secure AES 256 handle */
 SKR_enc_handle = 'QSAFE.TEST.TOKEN                00000002Y'

 call CSFPSKR

 exit
/* --------------------------------------------------------------- */
/* PKCS #11 Secret Key Reencrypt                                   */
/*                                                                 */
/* Use the PKCS #11 Secret Key Reencrypt callable service to       */
/* decrypt data and then reencrypt the data using secure secret    */
/* keys.                                                           */
/*                                                                 */
/* See the ICSF Application Programmer's Guide for more details.   */
/* --------------------------------------------------------------- */
CSFPSKR:
 SKR_rc            = 'FFFFFFFF'x ;
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 SKR_rs            = 'FFFFFFFF'x ;
 SKR_Exit_Length   = '00000000'x;
 SKR_Exit_Data     = '';
 SKR_Rule_Count    = '00000002'x;
 SKR_chain_data_length = '00000000'x
 SKR_chain_data        = '';
 SKR_dec_text_id       = '00000000'x;
 SKR_enc_text_length   = D2C(1000,4);
 SKR_enc_text          = COPIES('00'x,C2D(SKR_enc_text_length,4));
 SKR_enc_text_id       = '00000000'x;

  address linkpgm 'CSFPSKR'                               ,
                 'SKR_rc'                'SKR_rs'        ,
                 'SKR_Exit_Length'       'SKR_Exit_Data' ,
                 'SKR_Rule_Count'        'SKR_Rule_Array',
                 'SKR_dec_handle'        'SKR_enc_handle',
                 'SKR_dec_iv_length'     'SKR_dec_iv'    ,
                 'SKR_enc_iv_length'     'SKR_enc_iv'    ,
                 'SKR_chain_data_length' 'SKR_chain_data',
                 'SKR_dec_text_length'   'SKR_dec_text'  ,
                 'SKR_dec_text_id'                       ,
                 'SKR_enc_text_length'   'SKR_enc_text'  ,
                 'SKR_enc_text_id'                       ;

 if (SKR_rc \= ExpRC | SKR_rs \= ExpRS) then
   say 'SKR failed: rc =' c2x(SKR_rc) 'rs =' c2x(SKR_rs)
 else
   say 'SKR successful rc =' c2x(SKR_rc) 'rs =' c2x(SKR_rs)
return;
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Appendix D. Generating and verifying digital 
signatures 

The examples in this appendix are REXX executables that can be used to generate and verify 
digital signatures using CCA and PKCS#11. 

This appendix includes the following topics: 

� D.1, “CCA CRYSTALS-Dilithium digital signature generation and verification REXX 
sample” on page 158

� D.2, “PKCS #11 CRYSTALS-Dilithium digital signature generation and verification REXX 
sample” on page 161
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D.1  CCA CRYSTALS-Dilithium digital signature generation and 
verification REXX sample

A CCA CRYSTALS-Dilithium digital signature generation and verification REXX sample is 
shown in Example D-1.

Example D-1   CCA CRYSTALS-Dilithium digital signature generation and verification REXX sample

/* rexx */

/*-------------------------------------------------------------------*/
/* CRYSTALS-Dilithium Digital signature generation and verification  */
/*-------------------------------------------------------------------*/

/* expected results */
ExpRc = '00000000'x ;
ExpRs = '00000000'x ;

/*-------------------------------------------------------------------*/
/* Call the CSNDDSG service passing the CRYSTALS-Dilithium private   */
/* key. With a Crypto Express8S CCA Coprocessor, the message to be    */
/* signed can be up to 15000 bytes.                                  */
/*-------------------------------------------------------------------*/
DSG_Rule_Array = 'CRDL-DSA' ||,
                 'MESSAGE ' ||,
                 'CRDLHASH'
/* CRYSTALS-Dilithium 87 Round 3 Private key */
DSG_priv_key   = left('LI287R3.PRV.0001',64)
DSG_data       = copies('G',15000)   /* Message to Sign */

call CSNDDSG

/*-------------------------------------------------------------------*/
/* Call the CSNDDSG service passing the CRYSTALS-Dilithium public    */
/* key.                                                              */
/*-------------------------------------------------------------------*/
DSV_Data         = DSG_data
DSV_Sig_Field    = DSG_sig_field
DSV_Rule_Array   = DSG_Rule_Array
/* CRYSTALS-Dilithium 87 Round 3 Public key */
DSV_pub_key      = left('LI287R3.PUB.0002',64)

call CSNDDSV

exit

/* --------------------------------------------------------------- */
/* Digital Signature Generate                                      */
/*                                                                 */
/* Use the Digital Signature Generate callable service to generate */
/* a digital signature using a PKA private key.                    */
/*                                                                 */
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/* See the ICSF Application Programmer's Guide for more details.   */
/* --------------------------------------------------------------- */
CSNDDSG:

 DSG_rc            = 'FFFFFFFF'x ;
 DSG_rs            = 'FFFFFFFF'x ;
 DSG_Exit_Length   = '00000000'x ;
 DSG_Exit_Data     = '' ;
 DSG_Data_length       = D2C( Length(DSG_Data),4 );
 DSG_Sig_Field_Length  = '00001388'x ;
 DSG_Sig_Bit_Length    = '00000800'x ;
 DSG_Sig_Field         = copies('00'x,c2d(DSG_Sig_field_length))
 DSG_rule_count       = d2c( length(DSG_rule_array)/8,4 )
 DSG_priv_key_length  = d2c( length(DSG_priv_key),4 )

address linkpgm 'CSNDDSG'                                ,
                'DSG_rc'                'DSG_rs'         ,
                'DSG_Exit_Length'       'DSG_Exit_Data'  ,
                'DSG_Rule_Count'        'DSG_Rule_Array' ,
                'DSG_priv_key_length'   'DSG_priv_key'   ,
                'DSG_data_length'       'DSG_data'       ,
                'DSG_sig_field_length'                   ,
                'DSG_sig_bit_length'                     ,
                'DSG_sig_field'                          ;

  DSG_sig_field = substr(DSG_sig_field,1,c2d(DSG_sig_field_length))

  if (DSG_rc \= ExpRc | DSG_rs \= ExpRs) then
   say 'DSG: failed:  rc =' c2x(DSG_rc) 'rs =' c2x(DSG_rs)
  else
   say 'DSG  successful : rc =' c2x(DSG_rc) 'rs =' c2x(DSG_rs) ;

 return;

/* --------------------------------------------------------------- */
/* Digital Signature Verify                                        */
/*                                                                 */
/* Use the Digital Signature Verify callable service to verify a   */
/* digital signature using a PKA public key.                       */
/*                                                                 */
/* See the ICSF Application Programmer's Guide for more details.   */
/* --------------------------------------------------------------- */
CSNDDSV:

 DSV_rc               = 'FFFFFFFF'x ;
 DSV_rs               = 'FFFFFFFF'x ;
 DSV_Exit_Length      = '00000000'x ;
 DSV_Exit_Data        = '' ;
 DSV_Data_length      = D2C( Length(DSV_Data),4 );
 DSV_Sig_Field_Length = d2c( length(DSV_sig_field),4 )

 DSV_rule_count       = d2c( length(DSV_rule_array)/8,4 )
 DSV_pub_key_length   = d2c( length(DSV_pub_key),4 )
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 address linkpgm 'CSNDDSV'                                ,
                 'DSV_rc'                'DSV_rs'         ,
                 'DSV_Exit_Length'       'DSV_Exit_Data'  ,
                 'DSV_Rule_Count'        'DSV_Rule_Array' ,
                 'DSV_pub_key_length'    'DSV_pub_key'    ,
                 'DSV_data_length'       'DSV_data'       ,
                 'DSV_sig_field_length'                   ,
                 'DSV_sig_field'                          ;

 if DSV_rc \= ExpRc | DSV_rs \= ExpRs then
  say 'DSV failed:  rc =' c2x(DSV_rc) 'rs =' c2x(DSV_rs)
 else
  say 'DSV  successful : rc =' c2x(DSV_rc) 'rs =' c2x(DSV_rs) ;

return;
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D.2  PKCS #11 CRYSTALS-Dilithium digital signature generation 
and verification REXX sample

A PKCS #11 CRYSTALS-Dilithium digital signature generation and verification REXX sample 
is shown in Example D-2.

Example D-2   PKCS #11 CRYSTALS-Dilithium digital signature generation and verification REXX

/* rexx */

/*------------------------------------------------------------------*/
/* CRYSTALS-Dilithium Digital signature generation and verification */
/*------------------------------------------------------------------*/

 /* expected results */
 ExpRC = '00000000'x ;
 ExpRS = '00000000'x ;

/*------------------------------------------------------------------*/
/* Call the CSFPPKS service passing the CRYSTALS-Dilithium private  */
/* key handle to generate the digital signature.                    */
/*------------------------------------------------------------------*/
 PKS_Rule_Array          = 'LI2     '
 PKS_Key_Handle          = 'QSAFE.TEST.TOKEN                00000003Y'
 PKS_Cipher_Value        = Copies('A',128)
 PKS_Cipher_Value_Length = D2C( Length(PKS_Cipher_Value),4 );
 PKS_Clear_Value_length  = D2C(4596,4);
 PKS_Clear_Value         = Copies('00'x, C2D(PKS_Clear_Value_length) )

 Call CSFPPKS

/*------------------------------------------------------------------*/
/* Call the CSFPPKV service passing the CRYSTALS-Dilithium public   */
/* key handle to verify the digital signature.                      */
/*------------------------------------------------------------------*/
 PKV_Key_Handle          = 'QSAFE.TEST.TOKEN                00000002Y'

 Call CSFPPKV

 exit
/* --------------------------------------------------------------- */
/* PKCS #11 Private Key Sign                                       */
/*                                                                 */
/* Used to sign data using an ECC, RSA, DSA, or CRYSTALS-Dilithium */
/* private key.                                                    */
/* --------------------------------------------------------------- */
CSFPPKS:

 PKS_RC              = 'FFFFFFFF'x ;
 PKS_RS              = 'FFFFFFFF'x ;
 PKS_Exit_Length     = '00000000'x ;
 PKS_Exit_Data       = '' ;

 PKS_Rule_Count = d2c( length(PKS_Rule_Array)/8,4 )
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 address linkpgm 'CSFPPKS'                 ,
                 'PKS_rc'                  ,
                 'PKS_rs'                  ,
                 'PKS_Exit_Length'         ,
                 'PKS_Exit_Data'           ,
                 'PKS_Rule_Count'          ,
                 'PKS_Rule_Array'          ,
                 'PKS_Cipher_Value_Length' ,
                 'PKS_Cipher_Value'        ,
                 'PKS_Key_Handle'          ,
                 'PKS_Clear_Value_Length'  ,
                 'PKS_Clear_Value'         ;

 PKS_Clear_value = ,
    substr(PKS_clear_value,1,c2d(PKS_Clear_value_length))

 if (PKS_RC \= ExpRC | PKS_RS \= ExpRS) Then
    say 'PKS Failed : rc =' c2x(PKS_RC) 'rs =' c2x(PKS_RS) ;
 else
    say 'PKS Successful : rc =' c2x(PKS_RC) 'rs =' c2x(PKS_RS) ;
return;
/* --------------------------------------------------------------- */
/* PKCS #11 Public Key Verify                                      */
/*                                                                 */
/* Used to verify a signature using an ECC, RSA, DSA, or           */
/* CRYSTALS-Dilithium public key.                                  */
/* --------------------------------------------------------------- */
CSFPPKV:

 PKV_RC              = 'FFFFFFFF'x ;
 PKV_RS              = 'FFFFFFFF'x ;
 PKV_Exit_Length     = '00000000'x ;
 PKV_Exit_Data       = '';
 PKV_Cipher_Value_length = PKS_Cipher_Value_length
 PKV_Cipher_Value        = PKS_Cipher_Value
 PKV_Clear_Value         = PKS_Clear_Value
 PKV_Clear_Value_length  = PKS_Clear_Value_length
 PKV_Rule_Array          = PKS_Rule_Array
 PKV_Rule_Count      = d2c( length(PKV_rule_Array)/8,4 )

 address linkpgm 'CSFPPKV'             ,
                 'PKV_RC'              ,
                 'PKV_RS'              ,
                 'PKV_Exit_Length'     ,
                 'PKV_Exit_Data'       ,
                 'PKV_Rule_Count'      ,
                 'PKV_Rule_Array'      ,
                 'PKV_Clear_Value_Length' ,
                 'PKV_Clear_Value'      ,
                 'PKV_Key_Handle'       ,
                 'PKV_Cipher_Value_length' ,
                 'PKV_Cipher_Value'     ;
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 PKV_Cipher_value = ,
    substr(pkv_cipher_value,1,c2d(PKV_Cipher_value_length))

 if (PKV_RC \= ExpRC | PKV_RS \= ExpRS) Then
   say 'PKV Failed : rc =' c2x(PKV_RC) 'rs =' c2x(PKV_RS) ;
 else
   say 'PKV successful : rc =' c2x(PKV_RC) 'rs =' c2x(PKV_RS) ;

return;
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Appendix E. Creating a hybrid quantum-safe 
key exchange

The examples in this appendix are REXX executables that can be used to create a hybrid 
quantum-safe key exchange using CCA and PKCS#11. 

This appendix includes the following topics:

� E.1, “CCA hybrid quantum-safe key exchange scheme REXX sample” on page 166
� E.2, “PKCS #11 hybrid quantum-safe key exchange scheme REXX sample” on page 176

E
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E.1  CCA hybrid quantum-safe key exchange scheme REXX 
sample

A CCA hybrid quantum-safe key exchange scheme REXX sample is shown in Example E-1.

Example E-1   CCA Hybrid Quantum-safe key exchange scheme REXX sample

/* Rexx */

/*-------------------------------------------------------------------*/
/* CCA Hybrid Quantum-safe Key exchange scheme                       */
/*-------------------------------------------------------------------*/
/* PKE will require ACP '0083'x                                      */
/* EDH will require ACP '035D'x                                      */
/*-------------------------------------------------------------------*/

CALL INITIALIZE

/* expected results */
Exp_rc = '00000000'x 
Exp_rs = '00000000'x

/* global parameters */
exit_data_length = '00000000'x
exit_data = ''

/* PKB parameters */
private_name    = ''
user_assoc_data = ''

/* PKE parameters */
PKE_rule_array = 'ZERO-PAD'
PKE_keyvalue       = ''
sym_key_identifier = ''

/* KYT2 parameters */
kek_identifier = ''

/*---------------------*/
/* Create ALICE's keys */
/*---------------------*/

Say "Generating Alice's Kyber key pair..."

/*-----------------------------------------------------------*/
/* Build Kyber skeleton token with U-DATENC key usage flag   */
/*-----------------------------------------------------------*/
PKB_rule_array = 'QSA-PAIR'||'U-DATENC'
kvs            = '02'x ||,   /* algorithm identifier      */
                 '00'x ||,   /* clear key format skeleton */
                 '1024'x ||, /* algorithm parameter       */
                 '0000'x ||, /* clear key length          */
                 '0000'x     /* reserved                  */
CALL CSNDPKB
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/*-----------------------------------------------------------*/
/* Generate Kyber key pair using built skeleton token        */
/*-----------------------------------------------------------*/
PKG_rule_array = 'master  '
CALL CSNDPKG

ALICE_Kyber_pvt = PKG_token

/*-----------------------------------------------------------*/
/* Extract Kyber public key from Kyber private key token     */
/*-----------------------------------------------------------*/
PKX_source_key  = PKG_token
CALL CSNDPKX

ALICE_Kyber_publ = PKX_token

/*-----------------------------------------------------------*/
/* Build ECC skeleton token with KEY-MGMT key usage flag     */
/*-----------------------------------------------------------*/
Say "Generating Alice's ECC key pair..."
PKB_rule_array = 'ECC-PAIR'||'KEY-MGMT'
kvs            = '00'x ||,   /* Prime curve    */
                 '00'x ||,   /* reserved       */
                 '0180'x ||, /* 384 bits       */
                 '0000'x ||, /* pvt key length */
                 '0000'x     /* pub key length */
CALL CSNDPKB

/*-----------------------------------------------------------*/
/* Generate ECC key pair using built skeleton token          */
/*-----------------------------------------------------------*/
PKG_rule_array = 'master  '
CALL CSNDPKG

ALICE_ECC_pvt  = PKG_token

/*-----------------------------------------------------------*/
/* Extract ECC public key from ECC private key token         */
/*-----------------------------------------------------------*/
PKX_source_key     = PKG_token
CALL CSNDPKX

ALICE_ECC_publ = PKX_token

/*-------------------*/
/* Create BOB's keys */
/*-------------------*/

/*-----------------------------------------------------------*/
/* Build ECC skeleton token with KEY-MGMT key usage flag     */
/*-----------------------------------------------------------*/
Say "Generating Bob's ECC key pair..."

PKB_rule_array = 'ECC-PAIR'||'KEY-MGMT'
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kvs            = '00'x ||,   /* Prime curve    */
                 '00'x ||,   /* reserved       */
                 '0180'x ||, /* 384 bits       */
                 '0000'x ||, /* pvt key length */
                 '0000'x     /* pub key length */
CALL CSNDPKB

/*-----------------------------------------------------------*/
/* Generate ECC key pair using built skeleton token          */
/*-----------------------------------------------------------*/
PKG_rule_array = 'master  '
CALL CSNDPKG

BOB_ECC_pvt    = PKG_token

/*-----------------------------------------------------------*/
/* Extract ECC public key from ECC private key token         */
/*-----------------------------------------------------------*/
PKX_source_key     = PKG_token
CALL CSNDPKX

BOB_ECC_publ   = PKG_token

/*-----------------------------------------------------------*/
/* BOB creates the shared-key derivation input               */
/*-----------------------------------------------------------*/
PKE_rule_array = 'ZERO-PAD'||'RANDOM  '
PKE_keyvalue       = '01010101010101010202020202020202'x||,
                 '00000000000000000000000000000000'x
sym_key_identifier = BOB_AES_CIPHER_key_token
public_key_identifier = ALICE_KYBER_publ
CALL CSNDPKE

/*-----------------------------------------------------------*/
/* BOB completes the shared-key derivation                   */
/*-----------------------------------------------------------*/
KYBER_enciphered_PKE_keyvalue = enciphered_PKE_keyvalue
sym_enciphered_PKE_keyvalue   = PKE_keyvalue

EDH_rule_array = 'DERIV01 '||'KEY-AES '||'QSA-ECDH'||'IHKEYAES'
private_key_identifier = BOB_ECC_pvt
private_kek_identifier = ''
public_key_identifier  = ALICE_ECC_publ
hybrid_key_identifier  = BOB_AES_CIPHER_key_token
party_identifier       = 'Party#Identifier'
key_bit_length         = d2c(192,4)
initialization_vector  = '01010101010101010202020202020202'x
hybrid_ciphertext      = sym_enciphered_PKE_keyvalue
output_kek_identifier  = ''
output_key_identifier  = AES_CIPHER_skeleton
CALL CSNDEDH

/*-----------------------------------------------------------*/
/* A Key check value (KCV) is computed over BOBs shared-key  */
/*-----------------------------------------------------------*/
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KYT2_rule_array = 'AES     '||'GENERATE'||'CMACZERO' ;
key_identifier  = output_key_identifier
CALL CSNBKYT2
KYT2_kcv_BOB = KYT2_kcv

/*-----------------------------------------------------------*/
/* Alice completes the shared-key derivation                 */
/*-----------------------------------------------------------*/
EDH_rule_array = 'DERIV01 '||'KEY-AES '||'QSA-ECDH'||'IHKEYKYB'
private_key_identifier = ALICE_ECC_pvt
private_kek_identifier = ''
public_key_identifier  = BOB_ECC_publ
hybrid_key_identifier  = ALICE_Kyber_pvt
party_identifier       = 'Party#Identifier'
key_bit_length         = d2c(192,4)
initialization_vector  = ''
hybrid_ciphertext      = KYBER_enciphered_PKE_keyvalue
output_kek_identifier  = ''
output_key_identifier  = AES_CIPHER_skeleton
CALL CSNDEDH
/*-----------------------------------------------------------*/
/* A Key check value (KCV) is computed over Alice's          */
/* shared-key                                                */
/*-----------------------------------------------------------*/
key_identifier  = output_key_identifier
CALL CSNBKYT2
KYT2_kcv_ALICE = KYT2_kcv

/*-----------------------------------------------------------*/
/* Verify that both Alice and Bobs shared-keys are identical */
/*-----------------------------------------------------------*/
IF KYT2_kcv_ALICE = KYT2_kcv_BOB THEN SAY 'TESTCASE SUCCESSFUL'

Exit;
/*------------------------------------------------------------------*/
/* PKA Key Token Build - used to create PKA key tokens.             */
/*                                                                  */
/* See the ICSF Application Programmer's Guide for more details.    */
/*------------------------------------------------------------------*/
CSNDPKB:

PKB_rc                 = 'FFFFFFFF'x
PKB_rs                 = 'FFFFFFFF'x
exit_data_length       = '00000000'x
exit_data              = ''
PKB_rule_count         = d2c(length(PKB_rule_array)/8,4)
kvs_length             = d2c(length(kvs),4)
private_name_length    = d2c(length(private_name),4)
user_assoc_data_length = d2c(length(user_assoc_data),4)
key_deriv_data_length  = '00000000'x  /* valid only with ECC-VER1 */
key_deriv_data         = ''
reserved_field3_length = '00000000'x
reserved_field3        = ''
reserved_field4_length = '00000000'x
reserved_field4        = ''
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reserved_field5_length = '00000000'x
reserved_field5        = ''
PKB_token_length       = d2c(6500,4)  /* max */
PKB_token              = d2c(0,6500)

ADDRESS LINKPGM 'CSNDPKB' ,
                'PKB_rc'                 'PKB_rs' ,
                'exit_data_length'       'exit_data' ,
                'PKB_rule_count'         'PKB_rule_array' ,
                'kvs_length'             'kvs' ,
                'private_name_length'    'private_name' ,
                'user_assoc_data_length' 'user_assoc_data' ,
                'key_deriv_data_length'  'key_deriv_data' ,
                'reserved_field3_length' 'reserved_field3' ,
                'reserved_field4_length' 'reserved_field4' ,
                'reserved_field5_length' 'reserved_field5' ,
                'PKB_token_length'       'PKB_token'

IF PKB_rc \= Exp_rc | PKB_rs \= Exp_rs THEN
  SAY 'PKB FAILED rc =' c2x(PKB_rc) 'rs =' c2x(PKB_rs)
ELSE
 DO
  SAY 'PKB successful: rc =' c2x(PKB_rc) 'rs =' c2x(PKB_rs)
  PKB_token = SUBSTR(PKB_token,1,c2d(PKB_token_length))
 END

SAY
RETURN

/* --------------------------------------------------------------- */
/* PKA Key Generate  - Used to generate PKA key pairs.             */
/*                                                                 */
/* See the ICSF Application Programmer's Guide for more details.   */
/* --------------------------------------------------------------- */
CSNDPKG:

PKG_rc                   = 'FFFFFFFF'x ;
PKG_rs                   = 'FFFFFFFF'x ;
PKG_rule_count           = d2c(length(PKG_rule_array)/8,4) ;
regeneration_data_length = '00000000'x ;
regeneration_data        = '' ;
skeleton_key_id_length   = PKB_token_length ;
skeleton_key_id          = PKB_token ;
transport_key_id         = d2c(0,64) ;
PKG_token_length         = d2c(6500,4) ;
PKG_token                = copies('00'x,6500) ;

ADDRESS LINKPGM 'CSNDPKG' ,
                'PKG_rc'                   'PKG_rs' ,
                'exit_data_length'         'exit_data' ,
                'PKG_rule_count'           'PKG_rule_array' ,
                'regeneration_data_length' 'regeneration_data' ,
                'skeleton_key_id_length'   'skeleton_key_id' ,
                'transport_key_id' ,
                'PKG_token_length'         'PKG_token'
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IF PKG_rc \= Exp_rc | PKG_rs \= Exp_rs THEN
  SAY 'PKG FAILED rc =' c2x(PKG_rc) 'rs =' c2x(PKG_rs)
ELSE
 DO
  SAY 'PKG successful: rc =' c2x(PKG_rc) 'rs =' c2x(PKG_rs)
  PKG_token = SUBSTR(PKG_token,1,c2d(PKG_token_length))
 END

SAY
RETURN

/*------------------------------------------------------------------*/
/* PKA Public Key Extract                                           */
/*                                                                  */
/* Extracts a PKA public key token from a PKA internal (operational)*/
/* or external (importable) private key token.                      */
/*                                                                  */
/* See the ICSF Application Programmer's Guide for more details.    */
/*------------------------------------------------------------------*/
CSNDPKX:

PKX_rc               = 'FFFFFFFF'x ;
PKX_rs               = 'FFFFFFFF'x ;
PKX_rule_array_count = '00000000'x ;
PKX_rule_array       = '' ;
PKX_source_key_length    = d2c(length(PKX_source_key),4) ;
PKX_token_length     = d2c(6500,4) ;
PKX_token            = copies('00'x,6500) ;

ADDRESS LINKPGM 'CSNDPKX' ,
                'PKX_rc' ,
                'PKX_rs' ,
                'exit_data_length' ,
                'exit_data' ,
                'PKX_rule_array_count' ,
                'PKX_rule_array' ,
                'PKX_source_key_length' ,
                'PKX_source_key' ,
                'PKX_token_length' ,
                'PKX_token'

IF PKX_rc /= Exp_rc | PKX_rs /= Exp_rs THEN
 DO ;
  SAY 'PKX FAILED rc =' c2x(PKX_rc) 'rs =' c2x(PKX_rs)
 END ;
ELSE
 DO ;
   SAY 'PKX successful: rc =' c2x(PKX_rc) 'rs =' c2x(PKX_rs)
   PKX_token = ,
     SUBSTR(PKX_token,1,c2d(PKX_token_length))
 END
SAY
RETURN
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/* ---------------------------------------------------------------- */
/* PKA Encrypt                                                      */
/*                                                                  */
/* Creates and encrypts derivation input                            */
/*                                                                  */
/* See the ICSF Application Programmer's Guide for more details.    */
/* ---------------------------------------------------------------- */
CSNDPKE:

PKE_rc = 'FFFFFFFF'x
PKE_rs = 'FFFFFFFF'x
exit_data_length = '00000000'x
exit_data = ''
PKE_rule_array_count = d2c(length(PKE_rule_array)/8,4)
PKE_keyvalue_length      = d2c(length(PKE_keyvalue),4)
sym_key_identifier_length = d2c(length(sym_key_identifier),4)
public_key_identifier_length = d2c(length(public_key_identifier),4)
enciphered_PKE_keyvalue_length = d2c(1568,4)
enciphered_PKE_keyvalue = d2c(0,1568)

ADDRESS LINKPGM 'CSNDPKE' ,
                'PKE_rc' ,
                'PKE_rs' ,
                'exit_data_length' ,
                'exit_data' ,
                'PKE_rule_array_count' ,
                'PKE_rule_array' ,
                'PKE_keyvalue_length' ,
                'PKE_keyvalue' ,
                'sym_key_identifier_length' ,
                'sym_key_identifier' ,
                'public_key_identifier_length' ,
                'public_key_identifier' ,
                'enciphered_PKE_keyvalue_length' ,
                'enciphered_PKE_keyvalue' ;

IF PKE_rc /= Exp_rc | PKE_rs /= Exp_rs THEN
  SAY 'PKE FAILED rc=' c2x(PKE_rc) 'rs =' c2x(PKE_rs) ;
ELSE
 DO
  enciphered_PKE_keyvalue = ,
     substr(enciphered_PKE_keyvalue,1,c2d(enciphered_PKE_keyvalue_length))
  SAY 'PKE successful rc=' c2x(PKE_rc) 'rs =' c2x(PKE_rs) ;
 END
SAY
RETURN

/* ---------------------------------------------------------------- */
/* ECC Diffie-Hellman                                               */
/*                                                                  */
/* Generates Z value from D-H process. Derives the shared-key using */
/* Z and rand-32 from PKE.                                          */
172 Transitioning to Quantum-Safe Cryptography on IBM Z



/*                                                                  */
/* See the ICSF Application Programmer's Guide for more details.    */
/* -----------------------------------------------------------------*/
CSNDEDH:

EDH_rc = 'FFFFFFFF'x
EDH_rs = 'FFFFFFFF'x
exit_data_length = '00000000'x
exit_data = ''
EDH_rule_array_count = d2c(length(EDH_rule_array)/8,4)
private_key_identifier_length = d2c(length(private_key_identifier),4)
private_kek_identifier_length = d2c(length(private_kek_identifier),4)
public_key_identifier_length  = d2c(length(public_key_identifier),4)
hybrid_key_identifier_length  = d2c(length(hybrid_key_identifier),4)
party_identifier_length       = d2c(length(party_identifier),4)
initialization_vector_length  = d2c(length(initialization_vector),4)
hybrid_ciphertext_length      = d2c(length(hybrid_ciphertext),4)
reserved3_length = '00000000'x
reserved3 = ''
reserved4_length = '00000000'x
reserved4 = ''
reserved5_length = '00000000'x
reserved5 = ''
output_kek_identifier_length  = d2c(length(output_kek_identifier),4)
output_key_identifier_length  = d2c(900,4)
output_key_identifier         = left(output_key_identifier,900)

ADDRESS LINKPGM 'CSNDEDH' ,
                'EDH_rc' ,
                'EDH_rs' ,
                'exit_data_length' ,
                'exit_data' ,
                'EDH_rule_array_count' ,
                'EDH_rule_array' ,
                'private_key_identifier_length' ,
                'private_key_identifier' ,
                'private_kek_identifier_length' ,
                'private_kek_identifier' ,
                'public_key_identifier_length' ,
                'public_key_identifier' ,
                'hybrid_key_identifier_length' ,
                'hybrid_key_identifier' ,
                'party_identifier_length' ,
                'party_identifier' ,
                'key_bit_length' ,
                'initialization_vector_length' ,
                'initialization_vector' ,
                'hybrid_ciphertext_length' ,
                'hybrid_ciphertext' ,
                'reserved3_length' ,
                'reserved3' ,
                'reserved4_length' ,
                'reserved4' ,
                'reserved5_length' ,
                'reserved5' ,
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                'output_kek_identifier_length' ,
                'output_kek_identifier' ,
                'output_key_identifier_length' ,
                'output_key_identifier' ;

IF EDH_rc /= Exp_rc | EDH_rs /= Exp_rs THEN
  SAY 'EDH FAILED rc =' c2x(EDH_rc) 'rs =' c2x(EDH_rs)
ELSE
 DO
  SAY 'EDH successful: rc =' c2x(EDH_rc) 'rs =' c2x(EDH_rs)
  output_key_identifier = ,
     substr(output_key_identifier,1,c2d(output_key_identifier_length))
 END
SAY
RETURN

/*-------------------------------------------------------------------*/
/* Key Test2                                                         */
/*                                                                   */
/* Generate or verify a secure, cryptographic verification pattern   */
/* (also referred to as a key check value) for AES, DES and HMAC     */
/* keys.                                                             */
/*-------------------------------------------------------------------*/
CSNBKYT2:

KYT2_rc = 'FFFFFFFF'x ;
KYT2_rs = 'FFFFFFFF'x ;
KYT2_rule_array_count = d2c(length(KYT2_rule_array)/8,4) ;
key_identifier_length = d2c(length(key_identifier),4) ;
kek_identifier_length = d2c(length(kek_identifier),4) ;
reserved_length = d2c(0,4) ;
reserved        = '' ;
KYT2_kcv_length      = d2c(8,4) ;
KYT2_kcv             = d2c(0,c2d(KYT2_kcv_length)) ;

ADDRESS LINKPGM 'CSNBKYT2'                               ,
                'KYT2_rc'               'KYT2_rs'        ,
                'exit_data_length'      'exit_data'      ,
                'KYT2_rule_array_count' 'KYT2_rule_array',
                'key_identifier_length' 'key_identifier' ,
                'kek_identifier_length' 'kek_identifier' ,
                'reserved_length'       'reserved'       ,
                'KYT2_kcv_length'       'KYT2_kcv'       ;

IF KYT2_rc /= Exp_rc | KYT2_rs /= Exp_rs THEN
 SAY 'KYT2 failed: rc =' c2x(KYT2_rc) 'rs =' c2x(KYT2_rs) ;
ELSE
 SAY 'KYT2_kcv:' c2x(KYT2_kcv) ;

RETURN;

/* ----------------------------------------------------------------- */
INITIALIZE:

BOB_AES_CIPHER_key_token = ,
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'010000DA0500000003012058C870E9D3194F0000000000000000020200000100'x||,
'007440001A0002400002000102C000000003E000000005054145532443495048'x||,
'4552233139324249544034332E32432E31362020202020202020202020202020'x||,
'202020202020202020202020202020202020202020202020C1C5E240C3C9D7C8'x||,
'C5D940F1F9F2C2C9E340F4F36DF2C36DF1F6E2219F0ED611C48D338927427F2D'x||,
'141BB9EA9B5B198C98E141BFDD0FFC7B403B8F68620E8744CC92E321354C0707'x||,
'A2CC1E32C835563FDB749C76FF3A0CB32DB0667FA1CA77E8F1B1'x

/* symmetric key skeletons */
AES_CIPHER_SKELETON = ,
'0100003805000000000000000000000000000000000000000000020200000100'x||,
'001A0000000000000002000102C000000003E00000000000'x

RETURN
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E.2  PKCS #11 hybrid quantum-safe key exchange scheme 
REXX sample

A PKCS #11 hybrid quantum-safe key exchange scheme REXX sample is shown in 
Example E-2.

Example E-2   PKCS #11 Hybrid Quantum-safe key exchange scheme REXX sample

/* REXX */

/*********************************************************************/
/* PKCS #11 Hybrid Quantum-safe Key Exchange Scheme                  */
/*********************************************************************/
SIGNAL ON NOVALUE;

Call TCSETUP

/*********************************************************************/
/* Common test data                                                  */
/*********************************************************************/
/* expected results */
ExpRC = '00000000'x ;
ExpRS = '00000000'x ;

exit_data_length     = '00000000'X;
exit_data            = '';
GKP_EC_pub_attr_list =,
    '0006'X ||,
    CKA_CLASS              || '0004'X || CKO_PUBLIC_KEY            ||,
    CKA_KEY_TYPE           || '0004'X || CKK_EC                    ||,
    CKA_TOKEN              || '0001'X || CK_TRUE                   ||,
    CKA_IBM_SECURE         || '0001'X || CK_TRUE                   ||,
    CKA_EC_PARAMS          || D2C(LENGTH(secp521r1),2) ||,
                                         secp521r1                 ||,
    CKA_LABEL            /*|| 'llll'X || 'label'                  */ ;
GKP_EC_prv_attr_list =,
    '0005'X ||,
    CKA_CLASS              || '0004'X || CKO_PRIVATE_KEY           ||,
    CKA_KEY_TYPE           || '0004'X || CKK_EC                    ||,
    CKA_TOKEN              || '0001'X || CK_TRUE                   ||,
    CKA_IBM_SECURE         || '0001'X || CK_TRUE                   ||,
    CKA_LABEL            /*|| 'llll'X || 'label'                  */ ;
GKP_Kyber_pub_attr_list =,
    '0006'X ||,
    CKA_CLASS              || '0004'X || CKO_PUBLIC_KEY            ||,
    CKA_KEY_TYPE           || '0004'X || CKK_IBM_KYBER             ||,
    CKA_TOKEN              || '0001'X || CK_TRUE                   ||,
    CKA_IBM_SECURE         || '0001'X || CK_TRUE                   ||,
    CKA_IBM_KYBER_MODE     || D2C(LENGTH(DER_OID_KYBER_1024_R2),2) ||,
                                         DER_OID_KYBER_1024_R2     ||,
    CKA_LABEL            /*|| 'llll'X || 'label'                  */ ;
GKP_Kyber_prv_attr_list =,
    '0005'X ||,
    CKA_CLASS              || '0004'X || CKO_PRIVATE_KEY           ||,
    CKA_KEY_TYPE           || '0004'X || CKK_IBM_KYBER             ||,
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    CKA_TOKEN              || '0001'X || CK_TRUE                   ||,
    CKA_IBM_SECURE         || '0001'X || CK_TRUE                   ||,
    CKA_LABEL            /*|| 'llll'X || 'label'                  */ ;
DVK_attr_list_ECDH =,
    '0004'X ||,
    CKA_CLASS              || '0004'X || CKO_SECRET_KEY            ||,
    CKA_IBM_SECURE         || '0001'X || CK_TRUE                   ||,
    CKA_KEY_TYPE           || '0004'X || CKK_GENERIC_SECRET        ||,
    CKA_VALUE_LEN          || '0004'X || '00000042'X               ;
DVK_attr_list_Kyber =,
    '0004'X ||,
    CKA_CLASS              || '0004'X || CKO_SECRET_KEY            ||,
    CKA_IBM_SECURE         || '0001'X || CK_TRUE                   ||,
    CKA_KEY_TYPE           || '0004'X || CKK_AES                   ||,
    CKA_VALUE_LEN          || '0004'X || '00000020'X               ;
known_clear_text = COPIES('A',16);

my_token = Left('QSAFE.TEST.TOKEN',44) /* Replace this token handle */

/*********************************************************************/
/* Step 1.1 Generate an ECC key pair for Alice                       */
/*********************************************************************/
testN = 'ECALICE';
pub_key_attr_list = GKP_EC_pub_attr_list||D2C(LENGTH(testN),2)||testN;
prv_key_attr_list = GKP_EC_prv_attr_list||D2C(LENGTH(testN),2)||testN;
CALL CSFPGKP;
handle_EC_Pub_A  = pub_key_object_handle;
handle_EC_Priv_A = prv_key_object_handle;

/*********************************************************************/
/* Step 2.2 Generate an ECC key pair for Bob                         */
/*********************************************************************/
testN = 'ECBOB';
pub_key_attr_list = GKP_EC_pub_attr_list||D2C(LENGTH(testN),2)||testN;
prv_key_attr_list = GKP_EC_prv_attr_list||D2C(LENGTH(testN),2)||testN;
CALL CSFPGKP;
handle_EC_Pub_B  = pub_key_object_handle;
handle_EC_Priv_B = prv_key_object_handle;

/*********************************************************************/
/* Step 2.2 Generate a Kyber key pair for Bob                        */
/*********************************************************************/
testN = 'QSBOB';
pub_key_attr_list=GKP_Kyber_pub_attr_list||D2C(LENGTH(testN),2)||testN;
prv_key_attr_list=GKP_Kyber_prv_attr_list||D2C(LENGTH(testN),2)||testN;
CALL CSFPGKP;
handle_Kyb_Pub_B  = pub_key_object_handle;
handle_Kyb_Priv_B = prv_key_object_handle;

/*********************************************************************/
/* Step 2.3 Derive a key using ECDH(HYBRID_NULL) with Bob's Private  */
/* ECC key and Alice Public ECC key                                  */
/*********************************************************************/
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testN = 'DRVGENSECB';
pub_EC_POINT = CSFPGAV(handle_EC_Pub_A,CKA_EC_POINT);
rule_array                = 'EC-DH   ';
attribute_list            = DVK_attr_list_ECDH;
base_key_handle           = handle_EC_Priv_B;
DVK_ParmsList                =,
       CKD_IBM_HYBRID_NULL          ||, /* KDF function code      */
       '00000000'X                  ||, /* Optional data length   */
       '0000000000000000'X          ||, /* Optional data address  */
       D2C(LENGTH(pub_EC_POINT),4)  ||, /* Public value length    */
       pub_EC_POINT;                    /* Public value           */
CALL CSFPDVK;

handle_GenSec_B = target_key_handle;

/*********************************************************************/
/* Step 3.3 Derive a key using ECDH(HYBRID_NULL) with Alice's Private*/
/* ECC key and Bob's Public ECC key                                  */
/*********************************************************************/
testN = 'DRVGENSECA';
pub_EC_POINT = CSFPGAV(handle_EC_Pub_B,CKA_EC_POINT);
rule_array                = 'EC-DH   ';
attribute_list            = DVK_attr_list_ECDH;
base_key_handle           = handle_EC_Priv_A;
DVK_ParmsList                =,
       CKD_IBM_HYBRID_NULL          ||, /* KDF function code      */
       '00000000'X                  ||, /* Optional data length   */
       '0000000000000000'X          ||, /* Optional data address  */
       D2C(LENGTH(pub_EC_POINT),4)  ||, /* Public value length    */
       pub_EC_POINT;                    /* Public value           */
CALL CSFPDVK;
handle_GenSec_A = target_key_handle;

/*********************************************************************/
/* Step 3.4 Derive key using KYBER(HYBRID_SHA256), then encapsulate  */
/* Bob's Public Kyber key                                            */
/*********************************************************************/
testN = 'DRVSHAREDA';
rule_array                = 'KYBER   ';
attribute_list            = DVK_attr_list_Kyber;
base_key_handle           = handle_Kyb_Pub_B;

DVK_ParmsList                =,
       '00000000'X                  ||, /* version                   */
       CK_IBM_KEM_ENCAPSULATE       ||, /* mode                      */
       CKD_IBM_HYBRID_SHA256_KDF    ||, /* kdf                       */
       CK_FALSE                     ||, /* prepend                   */
       COPIES('00'X,3)              ||, /* reserved                  */
       D2C(0,4)                     ||, /* shared data len           */
       D2C(1600,4)                  ||, /* cipher len (output)       */
       handle_GenSec_A              ||, /* gen secret key handle     */
       COPIES('42'X,1600);              /* buffer for cipher output  */
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CALL CSFPDVK;
CALL parse_Kyber_parmslist;
handle_SharedKey_A = target_key_handle;

/*********************************************************************/
/* Step 4.1 Derive key using KYBER(HYBRID_SHA256) using decapsulate  */
/* with Bob's Private Kyber key                                      */
/*********************************************************************/
testN = 'DRVSHAREDB';
rule_array                = 'KYBER   ';
attribute_list            = DVK_attr_list_Kyber;
base_key_handle           = handle_Kyb_Priv_B;
DVK_ParmsList                =,
       '00000000'X                  ||, /* version                   */
       CK_IBM_KEM_DECAPSULATE       ||, /* mode                      */
       CKD_IBM_HYBRID_SHA256_KDF    ||, /* kdf                       */
       CK_FALSE                     ||, /* prepend                   */
       COPIES('00'X,3)              ||, /* reserved                  */
       D2C(0,4)                     ||, /* shared data len           */
       d2c( length(cphr),4  )       ||, /* cipher len (input)        */
       handle_GenSec_B              ||, /* gen secret key handle     */
       cphr                         ;   /* cipher from previous step */
CALL CSFPDVK;
handle_SharedKey_B = target_key_handle;

/*********************************************************************/
/* Encrypt some data with Alice's SharedKey                          */
/*********************************************************************/
testN = 'ENCSHAREDA';
rule_array                = 'AES     ECB     ONLY    ';
key_handle                = handle_SharedKey_A
init_vector               = '';
clear_text                = known_clear_text;
CALL CSFPSKE;
SAY 'ciphertext('||testN||'): '||C2X(cipher_text);
cipher_text_SharedKey_A = cipher_text;

/*********************************************************************/
/* Encrypt some data with Bob's SharedKey                            */
/*********************************************************************/
 testN = 'ENCSHAREDB';
rule_array                = 'AES     ECB     ONLY    ';
key_handle                = handle_SharedKey_B;
init_vector               = '';
clear_text                = known_clear_text;
CALL CSFPSKE;
SAY 'ciphertext('||testN||'): '||C2X(cipher_text);
cipher_text_SharedKey_B = cipher_text;

/*********************************************************************/
/* Verify cipher text is identical                                   */
/*********************************************************************/
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IF cipher_text_SharedKey_B = cipher_text_SharedKey_A THEN
  SAY 'TESTCASE SUCCESSFUL'

GETOUT: ;
EXIT;
/*********************************************************************/
/* parse_Kyber_parmslist                                             */
/*********************************************************************/
parse_Kyber_parmslist:
    PARSE VALUE DVK_ParmsList WITH ,
              ver              +4  ,
              mode             +4  ,
              kdf              +4  ,
              pre              +1  ,
              rsvd             +3  ,
              shrdlen          +4  ,
              cphrlen          +4  ,
              gskH             +44 ,
              remaining            ;
    shrdlenD = C2D(shrdlen);
    cphrlenD = C2D(cphrlen);
    PARSE VALUE remaining WITH ,
              shrd             +(shrdlenD) ,
              cphr             +(cphrlenD) ,
              extra                        ;
    verP     = "'"||C2X(ver)||"'X (version "||C2D(ver)||")";
    modeP    = "'"||C2X(mode)||"'X";
    SELECT;
      WHEN mode = CK_IBM_KEM_ENCAPSULATE THEN
        modeP = modeP||" (CK_IBM_KEM_ENCAPSULATE)";
      WHEN mode = CK_IBM_KEM_DECAPSULATE THEN
        modeP = modeP||" (CK_IBM_KEM_DECAPSULATE)";
      OTHERWISE
        modeP = modeP||" (unknown)";
    END;
    kdfP     = "'"||C2X(kdf)||"'X";
    SELECT;
      WHEN kdf = CKD_IBM_HYBRID_SHA1_KDF THEN
        kdfP = kdfP||" (CKD_IBM_HYBRID_SHA1_KDF)";
      WHEN kdf = CKD_IBM_HYBRID_SHA224_KDF THEN
        kdfP = kdfP||" (CKD_IBM_HYBRID_SHA224_KDF)";
      WHEN kdf = CKD_IBM_HYBRID_SHA256_KDF THEN
        kdfP = kdfP||" (CKD_IBM_HYBRID_SHA256_KDF)";
      WHEN kdf = CKD_IBM_HYBRID_SHA384_KDF THEN
        kdfP = kdfP||" (CKD_IBM_HYBRID_SHA384_KDF)";
      WHEN kdf = CKD_IBM_HYBRID_SHA512_KDF THEN
        kdfP = kdfP||" (CKD_IBM_HYBRID_SHA512_KDF)";
      OTHERWISE
        kdfP = kdfP||" (unknown)";
    END;
    preP     = "'"||C2X(pre)||"'X";
    SELECT;
      WHEN pre = CK_FALSE THEN
        preP = preP||"       (don't prepend)";
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      WHEN pre = CK_TRUE THEN
        preP = preP||"       (do prepend)";
      OTHERWISE
        preP = preP||"       (unknown)";
    END;
    rsvdP    = "'"||C2X(rsvd)||"'X";
    shrdlenP = "'"||C2X(shrdlen)||"'X ("||shrdlenD||")";
    cphrlenP = "'"||C2X(cphrlen)||"'X ("||cphrlenD||")";
    gskHP    = "'"||gskH||"'";

RETURN;

/* --------------------------------------------------------------- */
/* PKCS #11 Generate Key Pair                                      */
/*                                                                 */
/* Use the PKCS #11 Generate Key Pair callable service to generate */
/* an RSA, DSA, Elliptic Curve, Diffie-Hellman, Dilithium (LI2) or */
/* Kyber key pair.                                                 */
/*                                                                 */
/* See the ICSF Application Programmer's Guide for more details.   */
/* --------------------------------------------------------------- */
CSFPGKP:
return_code               = 'FFFFFFFF'X;
reason_code               = 'FFFFFFFF'X;
token_handle              = my_token;
rule_array_count          = '00000000'X;
rule_array                = '';
/* pub_key_attr_list is set by caller */
pub_key_attr_list_length  = D2C(LENGTH(pub_key_attr_list),4);
pub_key_object_handle     = COPIES(' ',44);
/* prv_key_attr_list is set by caller */
prv_key_attr_list_length  = D2C(LENGTH(prv_key_attr_list),4);
prv_key_object_handle     = COPIES(' ',44);
ADDRESS LINKPGM 'CSFPGKP',
                'return_code'               'reason_code'        ,
                'exit_data_length'          'exit_data'          ,
                'token_handle'                                   ,
                'rule_array_count'          'rule_array'         ,
                'pub_key_attr_list_length'  'pub_key_attr_list'  ,
                'pub_key_object_handle'                          ,
                'prv_key_attr_list_length'  'prv_key_attr_list'  ,
                'prv_key_object_handle'                         ;
IF (return_code \= ExpRC) | (reason_code \= ExpRS) THEN
  DO;
    SAY 'GKP('||testN||'): rc/rs='||C2X(return_code)||'/'||,
                                    C2X(reason_code);
    SIGNAL GETOUT;
  END;
Else
  DO;
    SAY 'GKP('||testN||'): successful';
    SAY '  pub_key_object_handle = "'||pub_key_object_handle||'"';
    SAY '  prv_key_object_handle = "'||prv_key_object_handle||'"';
  END;
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RETURN;

/* --------------------------------------------------------------- */
/* PKCS #11 Derive Key                                             */
/*                                                                 */
/* Use the PKCS #11 Derive Key callable service to generate a new  */
/* secret key object from an existing key object.                  */
/*                                                                 */
/* See the ICSF Application Programmer's Guide for more details.   */
/* --------------------------------------------------------------- */
CSFPDVK:
return_code               = 'FFFFFFFF'X;
reason_code               = 'FFFFFFFF'X;
rule_array_count          = D2C(TRUNC((LENGTH(rule_array)+7)/8),4);
/* rule_array (properly padded) is set by caller */
/* attribute_list is set by caller */
attribute_list_length     = D2C(LENGTH(attribute_list),4);
/* base_key_handle is set by caller */
/* DVK_ParmsList is set by caller */
DVK_ParmsList_length         = D2C(LENGTH(DVK_ParmsList),4);
target_key_handle         = COPIES('DD'X,44);
ADDRESS LINKPGM 'CSFPDVK',
                'return_code'               'reason_code'        ,
                'exit_data_length'          'exit_data'          ,
                'rule_array_count'          'rule_array'         ,
                'attribute_list_length'     'attribute_list'     ,
                'base_key_handle'                                ,
                'DVK_ParmsList_length'         'DVK_ParmsList'         ,
                'target_key_handle'                              ;
IF (return_code \= ExpRC) | (reason_code \= ExpRS) THEN
  DO;
    SAY 'DVK('||testN||'): rc/rs='||C2X(return_code)||'/'||,
                                    C2X(reason_code);
    SIGNAL GETOUT;
  END;
Else
  DO;
    SAY 'DVK('||testN||'): successful';
    SAY '  target_key_handle = "'||target_key_handle||'"';
  END;
RETURN;

/* --------------------------------------------------------------- */
/* PKCS #11 Secret Key Encrypt                                     */
/*                                                                 */
/* Use the PKCS #11 Secret Key Encrypt callable service to encipher*/
/* data using a symmetric key.                                     */
/*                                                                 */
/* See the ICSF Application Programmer's Guide for more details.   */
/* --------------------------------------------------------------- */
CSFPSKE:
return_code               = '99999999'X;
reason_code               = '99999999'X;
rule_array_count          = D2C(TRUNC((LENGTH(rule_array)+7)/8),4);
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/* rule_array (properly padded) is set by caller */
/* key_handle is set by caller */
init_vector_length        = D2C(LENGTH(init_vector),4);
/* init_vector is set by caller */
chain_data_length         = '00000080'X
chain_data                = COPIES('00'X,C2D(chain_data_length));
clear_text_length         = D2C(LENGTH(clear_text),4);
/* clear_text is set by caller */
clear_text_id             = '00000000'X;
cipher_text_length        = D2C(C2D(clear_text_length)+16,4);
cipher_text               = COPIES('00'X,C2D(cipher_text_length));
cipher_text_id            = '00000000'X;
ADDRESS LINKPGM 'CSFPSKE'                               ,
                'return_code'          'reason_code'    ,
                'exit_data_length'     'exit_data'      ,
                'rule_array_count'     'rule_array'     ,
                'key_handle'                            ,
                'init_vector_length'   'init_vector'    ,
                'chain_data_length'    'chain_data'     ,
                'clear_text_length'    'clear_text'     ,
                'clear_text_id'                         ,
                'cipher_text_length'   'cipher_text'    ,
                'cipher_text_id'                        ;
IF (return_code \= ExpRC) | (reason_code \= ExpRS) THEN
  DO;
    SAY 'SKE('||testN||'): rc/rs='||C2X(return_code)||'/'||,
                                    C2X(reason_code);
    SIGNAL GETOUT;
  END;
Else
  SAY 'SKE('||testN||'): successful';
cipher_text = LEFT(cipher_text,C2D(cipher_text_length));
RETURN;

/* --------------------------------------------------------------- */
/* PKCS #11 Get Attribute Value                                    */
/*                                                                 */
/* Use the PKCS #11 Get Attribute Value callable service (CSFPGAV) */
/* to retrieve the attributes of an object.                        */
/*                                                                 */
/* See the ICSF Application Programmer's Guide for more details.   */
/* --------------------------------------------------------------- */
CSFPGAV:
PARSE ARG RATTR.handle,RATTR.attr;
shortHandle = LEFT(RATTR.handle,41);
return_code      = 'FFFFFFFF'X;
reason_code      = 'FFFFFFFF'X;
rule_array_count = '00000000'X;
handle           = RATTR.handle;
rule_array       = '';
attr_list_length = D2C(32000,4);
attr_list        = COPIES('FF'X,32000);
ADDRESS LINKPGM 'CSFPGAV' ,
                'return_code'      'reason_code'   ,
                'exit_data_length' 'exit_data'     ,
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                'handle'                           ,
                'rule_array_count' 'rule_array'    ,
                'attr_list_length' 'attr_list'     ;
IF (return_code \= ExpRC) | (reason_code \= ExpRS) THEN
  DO;
    SAY 'CSFPGAV('||shortHandle||'): rc = '||C2X(return_code)||,
                 ' rs = '||C2X(reason_code);
    SIGNAL GETOUT;
  END;
attr_list = LEFT(attr_list,C2D(attr_list_length));
number_attributes = C2D(LEFT(attr_list,2));
attr_list = SUBSTR(attr_list,3);
DO n = 1 TO number_attributes;
  attr_number  = LEFT(attr_list,4);
  attr_list    = SUBSTR(attr_list,5);
  attr_val_len = C2D(LEFT(attr_list,2));
  attr_list    = SUBSTR(attr_list,3);
  attr_value   = LEFT(attr_list,attr_val_len);
  attr_list    = SUBSTR(attr_list,attr_val_len+1);
  IF (attr_number = RATTR.attr) THEN
    SIGNAL DONE_W_READ_ATTR;
END;
attr_value = 'BADBADBAD';
DONE_W_READ_ATTR: ;
RETURN attr_value;

TCSETUP:

DER_OID_KYBER_1024_R2 = '060B2B0601040102820B050404'X;
secp521r1             = '06052b81040023'x

CKK_IBM_KYBER         = '80010024'X;
CKK_EC                = '00000003'X
CKK_GENERIC_SECRET    = '00000010'X
CKK_AES               = '0000001F'X

CKO_PUBLIC_KEY        = '00000002'X
CKO_PRIVATE_KEY       = '00000003'X
CKO_SECRET_KEY        = '00000004'X

CKA_CLASS             = '00000000'X
CKA_TOKEN             = '00000001'X
CKA_IBM_KYBER_MODE    = '8000000E'X
CKA_LABEL             = '00000003'X
CKA_IBM_SECURE        = '80000006'X
CKA_EC_PARAMS         = '00000180'X
CKA_EC_POINT          = '00000181'X
CKA_VALUE_LEN         = '00000161'X
CKA_KEY_TYPE          = '00000100'X

CKD_IBM_HYBRID_NULL        = '80000001'X;
CKD_IBM_HYBRID_SHA1_KDF    = '80000002'X;
CKD_IBM_HYBRID_SHA224_KDF  = '80000003'X;
CKD_IBM_HYBRID_SHA256_KDF  = '80000004'X;
CKD_IBM_HYBRID_SHA384_KDF  = '80000005'X;
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CKD_IBM_HYBRID_SHA512_KDF  = '80000006'X;

CK_IBM_KEM_ENCAPSULATE    = '00000001'X;
CK_IBM_KEM_DECAPSULATE    = '00000002'X;

CK_TRUE                   = '01'x
CK_FALSE                  = '00'x
return

NOVALUE:
SAY "Condition NOVALUE was raised."
SAY CONDITION("D") "variable was not initialized."
SAY sigl||': '||SOURCELINE(sigl)
EXIT;
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Appendix F. Generating a one-way hash

The examples in this appendix are REXX executables that can be used to generate an 
SHA-512 one-way hash, using CCA and PKCS#11. 

This appendix includes the following topics:

� F.1, “CCA SHA-512 one-way hash REXX sample” on page 188
� F.2, “PKCS #11 SHA-512 one-way hash REXX sample” on page 189

F
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F.1  CCA SHA-512 one-way hash REXX sample

A CCA SHA-512 one-way hash REXX sample is shown in Example F-1.

Example F-1   CCA SHA-512 one-way hash REXX sample

/* Rexx */ 
 
/*-------------------------------------------------------------------*/ 
/* Generate SHA-512 hash using CCA One-Way Hash service           */ 
/*-------------------------------------------------------------------*/ 
 
 /* expected results */ 
 ExpRc = '00000000'x 
 ExpRs = '00000000'x 

 BOWH_Rule_Array   = 'SHA-512 ' || 'ONLY    ' ; 
 BOWH_Text         = '0123456789ABCDEF'; 
 BOWH_Hash         = copies('00'x, 64); 
 BOWH_Chain_Vector = copies('00'x,128); 
 
 call CSNBOWH 

 say 'BOWH Hash: ' c2x(BOWH_Hash)  

 Exit 

/* --------------------------------------------------------------- */ 
/* One-Way Hash Generate                                           */ 
/*                                                                 */ 
/* Used to generate a one-way hash                                 */ 
/*                                                                 */ 
/* See the ICSF Application Programmer's Guide for more details.   */ 
/* --------------------------------------------------------------- */ 

CSNBOWH: 

 /* initialize parameter list */ 
 BOWH_rc                  = 'FFFFFFFF'x ; 
 BOWH_rs                  = 'FFFFFFFF'x ; 
 BOWH_Exit_Length         = '00000000'x ; 
 BOWH_Exit_Data           = '00000000'x ; 
 BOWH_Rule_Count          = d2c(length(BOWH_Rule_Array)/8,4); 
 BOWH_Text_Length         = d2c(length(BOWH_Text),4); 
 BOWH_Chain_Vector_Length = d2c(length(BOWH_Chain_Vector),4); 
 BOWH_Hash_Length         = d2c(Length(BOWH_Hash),4); 
 
 /* call CSNBOWH */ 
 address linkpgm 'CSNBOWH' , 
                 'BOWH_rc'                  'BOWH_rs'           , 
                 'BOWH_Exit_Data_Length'    'BOWH_Exit_Data'    , 
                 'BOWH_Rule_Count'          'BOWH_Rule_Array'   , 
                 'BOWH_Text_Length'         'BOWH_Text'         , 
                 'BOWH_Chain_Vector_Length' 'BOWH_Chain_Vector' , 
                 'BOWH_Hash_Length'         'BOWH_Hash'         ; 
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 if (BOWH_rc \= ExpRc | BOWH_rs \= ExpRs) then 
  say 'BOWH failed: rc =' c2x(BOWH_rc) 'rs =' c2x(BOWH_rs) ; 
 else 
  say 'BOWH successful: rc =' c2x(BOWH_rc) 'rs =' c2x(BOWH_rs) ; 
 

return 

F.2  PKCS #11 SHA-512 one-way hash REXX sample

A PKCS #11 SHA-512 one-way hash REXX sample is shown in Example F-2.

Example F-2   PKCS #11 SHA-512 one-way hash REXX sample

/* Rexx */ 
 
/*-------------------------------------------------------------------*/ 
/* Generate SHA-512 hash using PKCS #11 One-Way Hash service */ 
/*-------------------------------------------------------------------*/ 
 
 /* expected results */ 
 ExpRc = '00000000'x 
 ExpRs = '00000000'x 
 
 
 /* Call PKCS#11 One-Way Hash with generated token */ 
 POWH_Rule_Array   = 'SHA-512 ' || 'ONLY    ' ; 
 POWH_Text         = '0123456789ABCDEF'; 
 POWH_Hash         = copies('00'x, 64); 
 POWH_Chain_Vector = copies('00'x,128); 
 POWH_Handle       = Left('QSAFE.TEST.TOKEN',44) 
 
 call CSNPOWH 
 
 say 'POWH Hash: ' c2x(POWH_Hash) 
 
 
 Exit 
/* --------------------------------------------------------------- */ 
/* PKCS #11 One-Way Hash, Sign, or Verify                          */ 
/*                                                                 */ 
/* Use the PKCS #11 One-Way Hash, Sign, or Verify callable service */ 
/* to generate a one-way hash on specified text, sign specified    */ 
/* text, or verify a signature on specified text.                  */ 
/*                                                                 */ 
/* See the ICSF Application Programmer's Guide for more details.   */ 
/* --------------------------------------------------------------- */ 
 
CSNPOWH: 
 
 /* initialize parameter list */ 
 POWH_RC                  = 'FFFFFFFF'x ; 
 POWH_RS                  = 'FFFFFFFF'x ; 
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 POWH_Exit_Length         = '00000000'x ; 
 POWH_Exit_Data           = '' ; 
 POWH_Rule_Count          = d2c(length(POWH_Rule_Array)/8,4); 
 POWH_Text_Length         = d2c(length(POWH_Text),4); 
 POWH_Text_id             = '00000000'x ; 
 POWH_Chain_Vector_Length = d2c(length(POWH_Chain_Vector),4); 
 POWH_Hash_Length         = D2C(Length(POWH_Hash),4); 
 

 /* call CSNPOWH */ 
 address linkpgm 'CSFPOWH' , 
                 'POWH_RC'                     'POWH_RS'           , 
                 'POWH_Exit_Length'            'POWH_Exit_Data'    , 
                 'POWH_Rule_Count'             'POWH_Rule_Array'   , 
                 'POWH_Text_Length'            'POWH_Text'         , 
                 'POWH_Text_id'                                    , 
                 'POWH_Chain_Vector_Length'    'POWH_Chain_Vector' , 
                 'POWH_Handle'                                     , 
                 'POWH_Hash_Length'            'POWH_Hash'         ; 

 
 if (POWH_rc \= ExpRc | POWH_rs \= ExpRs) then 
  say 'POWH failed: rc =' c2x(POWH_rc) 'rs =' c2x(POWH_rs) ; 
 else 
  say 'POWH successful: rc =' c2x(POWH_rc) 'rs =' c2x(POWH_rs) ; 

 return 
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