
Redbooks

Front cover

Transitioning to Quantum-Safe
Cryptography on IBM Z

Bill White

Didier Andre

Gregg Arquero

Ritu Bajaj

Joe Cronin

Anne Dames

Henrik Lyksborg

Alexandra Miranda

Maxwell Weiss

IBM Redbooks

Transitioning to Quantum-Safe Cryptography on IBM Z

July 2022

SG24-8525-00

© Copyright International Business Machines Corporation 2022. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (July 2022)

This edition applies to the quantum-safe capabilities available with the IBM z16 and IBM z15.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
Authors. ix
Now you can become a published author, too! . xi
Comments welcome. xi
Stay connected to IBM Redbooks . xi

Chapter 1. Cryptography in the quantum computing era . 1
1.1 When will quantum computers break cryptography . 2

1.1.1 Business risks . 2
1.1.2 Quantum threats and implications on data and identity . 3

1.2 Why are quantum computers a threat . 4
1.2.1 Cryptography overview . 5

1.3 Impact of Shor’s and Grover’s algorithms . 7
1.4 Cryptographic vulnerabilities possible with quantum computers. 9
1.5 New algorithms to counter CRQC attacks . 11

1.5.1 Quantum-safe algorithms . 11
1.6 Quantum-safe capabilities with IBM Z. 13

1.6.1 Quantum-safe infrastructure in IBM z16 . 13
1.6.2 Quantum-safe API functions available to application programs 14

Chapter 2. The journey to quantum protection . 15
2.1 Quantum-safe cryptographic experiences . 16

2.1.1 Educating the team . 16
2.1.2 Building a cryptographic inventory . 17
2.1.3 Creating a roadmap . 19
2.1.4 Designing and running with cryptographic agility in mind 20
2.1.5 Quantum-safe journey in review . 20

2.2 Starting the quantum protection journey . 21
2.2.1 Following industry guidance . 21
2.2.2 Start now. 22
2.2.3 Building your inventory . 23
2.2.4 Knowing your options . 24
2.2.5 Incorporate cryptographic agility . 25

Chapter 3. Using quantum-safe cryptography . 27
3.1 Protecting sensitive data . 28

3.1.1 Problem statement . 28
3.1.2 Solving this challenge by using IBM z16 capabilities . 28
3.1.3 Industry applications . 30

3.2 Use case: Sharing keys securely . 31
3.2.1 Problem statement . 31
3.2.2 Solving this challenge with IBM z16 capabilities . 32
3.2.3 Industry applications . 35

3.3 Use case: Message integrity and secure logging . 37
3.3.1 Problem statement . 37
3.3.2 Solving the integrity challenge with IBM z16 capabilities 39
© Copyright IBM Corp. 2022. iii

3.3.3 Industry applications . 41
3.4 Proof of authorship . 42

3.4.1 Problem statement . 43
3.4.2 Solving this challenge with IBM z16 capabilities . 44

Chapter 4. Getting ready for quantum-safe cryptography . 47
4.1 IBM Z cryptographic components overview . 48

4.1.1 IBM Z cryptographic hardware components . 48
4.1.2 IBM Z cryptographic software components. 52
4.1.3 Minimum hardware and software for quantum-safe cryptography support 55

4.2 Steps towards quantum protection . 56
4.2.1 Discovering and classifying the data. 56
4.2.2 Establishing a cryptographic inventory . 58
4.2.3 Considering cryptographic agility . 61
4.2.4 Adopting quantum-safe cryptography . 63
4.2.5 Where to find help at IBM . 64

4.3 Best practices, mitigation options, and tools . 65
4.3.1 ICSF best practices. 65
4.3.2 Mitigation options . 68
4.3.3 Key management tools . 69

Chapter 5. Creating a cryptographic inventory . 71
5.1 Collection tools overview. 72
5.2 Using ICSF cryptographic usage tracking. 73

5.2.1 Configuring SMF for ICSF cryptographic usage tracking 73
5.2.2 Enabling cryptographic usage tracking within ICSF . 74
5.2.3 Formatting cryptographic usage statistics records . 75

5.3 Using IBM Application Discovery and Delivery Intelligence . 77
5.3.1 Configuring IBM AD Build Client for ICSF crypto analysis 78
5.3.2 Interpreting IBM AD Build Client file results . 80
5.3.3 Interpreting the CRYPTO CAPIResolutions.json resolutions file 80
5.3.4 Extending the CRYPTO CAPIResolutions.json resolutions file 81

5.4 Using IBM Crypto Analytics Tool. 82
5.4.1 IBM CAT overview . 82
5.4.2 Reported elements . 83
5.4.3 Monitoring functions . 83
5.4.4 Crypto Analytics Tool use case. 84
5.4.5 Activating the policy . 84
5.4.6 Checking the policy . 85
5.4.7 Applying the policy to a snapshot . 87

5.5 Using IBM z/OS Encryption Readiness Technology . 89
5.5.1 Enabling zERT for zERT Network Analyzer . 89
5.5.2 Using IBM zERT Network Analyzer . 90
5.5.3 Monitoring data in-transit by using zERT . 94

Chapter 6. Deploying quantum-safe capabilities . 97
6.1 Quantum-safe algorithm artifacts . 98
6.2 Converting your PKDS to KDSRL format . 99
6.3 Ensuring the environment is ready . 101
6.4 Quantum-safe key generation. 102

6.4.1 Generating an AES 256-bit key by using ICSF CCA services 102
6.4.2 Generating an AES 256-bit key by using ICSF PKCS #11 services. 103
6.4.3 Generating CRYSTALS-Dilithium key by using ICSF CCA services 103
6.4.4 Generating CRYSTALS-Dilithium key by using ICSF PKCS #11 services 104
iv Transitioning to Quantum-Safe Cryptography on IBM Z

6.4.5 Generating CRYSTALS-Kyber key by using ICSF CCA services. 104
6.4.6 Generating CRYSTALS-Kyber key by using ICSF PKCS #11 services 105

6.5 Quantum-safe encryption . 105
6.5.1 Translating ciphertext to AES 256-bit encryption by using ICSF CCA services . 106
6.5.2 Translating ciphertext to AES 256-bit encryption by using ICSF PKCS #11 services

106
6.6 Quantum-safe digital signatures . 107

6.6.1 Generating and verifying CRYSTALS-Dilithium digital signature by using ICSF CCA
services. 107

6.6.2 Generating and verifying CRYSTALS-Dilithium digital signature by using ICSF PKCS
#11 services . 108

6.6.3 Using digital signatures to protect SMF records . 108
6.7 Quantum-safe hybrid key exchange . 113

6.7.1 Performing a hybrid quantum-safe key exchange scheme by using ICSF CCA
services. 113

6.7.2 Performing a hybrid quantum-safe key exchange scheme by using ICSF PKCS #11
services. 115

6.8 Quantum-safe hashing . 117
6.8.1 Hashing a message with the SHA-512 algorithm by using ICSF CCA services . 117
6.8.2 Hashing a message with the SHA-512 algorithm by using ICSF PKCS #11 services

117
6.9 Validating your quantum-safe transition . 118

Appendix A. Finding cryptographic attributes . 121
A.1 Tools for cryptographic inventory . 122
A.2 Investigation process . 123

A.2.1 Starting with application source code scan from IBM ADDI 123
A.2.2 Starting with a policy check in the IBM CAT. 124
A.2.3 Starting with an application that you know . 124
A.2.4 Starting with SMF record type 82 reports . 124

A.3 Process that was used . 125
A.3.1 Examples of finding key usage events . 125
A.3.2 Examples of finding key lifecycle events . 130
A.3.3 Summary . 132

Appendix B. Generating quantum-safe keys . 133
B.1 CCA AES 256-bit key generation REXX sample . 134
B.2 PKCS #11 AES 256-bit key generation REXX sample. 137
B.3 CCA CRYSTALS-Dilithium key pair generation REXX sample 139
B.4 PKCS #11 CRYSTALS-Dilithium key pair generation REXX sample 142
B.5 CCA CRYSTALS-Kyber key pair generation REXX sample. 144
B.6 PKCS #11 CRYSTALS-Kyber key pair generation REXX sample 147

Appendix C. Translating plain text into cipher text . 151
C.1 CCA ciphertext translation REXX sample . 152
C.2 PKCS #11 ciphertext translation REXX sample . 154

Appendix D. Generating and verifying digital signatures . 157
D.1 CCA CRYSTALS-Dilithium digital signature generation and verification REXX sample .

158
D.2 PKCS #11 CRYSTALS-Dilithium digital signature generation and verification REXX

sample . 161

Appendix E. Creating a hybrid quantum-safe key exchange 165
 Contents v

E.1 CCA hybrid quantum-safe key exchange scheme REXX sample 166
E.2 PKCS #11 hybrid quantum-safe key exchange scheme REXX sample 176

Appendix F. Generating a one-way hash . 187
F.1 CCA SHA-512 one-way hash REXX sample . 188
F.2 PKCS #11 SHA-512 one-way hash REXX sample. 189
vi Transitioning to Quantum-Safe Cryptography on IBM Z

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2022. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

DB2®
Db2®
IBM®
IBM Research®
IBM Security®

IBM Z®
PIN®
RACF®
Redbooks®
Redbooks (logo) ®

Think®
z/OS®
z/VM®
z15™
z16™

The following terms are trademarks of other companies:

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Other company, product, or service names may be trademarks or service marks of others.
viii Transitioning to Quantum-Safe Cryptography on IBM Z

http://www.ibm.com/legal/copytrade.shtml

Preface

As cyberattacks continue to increase, the cost and reputation impacts of data breaches
remain a top concern across all enterprises. Even if sensitive data is encrypted and is of no
use now, cybercriminals are harvesting that data because they might gain access to a
quantum computer that can break classical cryptographic algorithms sometime in the future.
Therefore, organizations must start protecting their sensitive data today by using
quantum-safe cryptography.

This IBM® Redbooks® publication reviews some potential threats to classical cryptography
by way of quantum computers and how to make best use of today’s quantum-safe capabilities
on the IBM Z platform. This book also provides guidance about how to get started on a
quantum-safe journey and step-by-step examples for deploying IBM Z® quantum-safe
capabilities.

This publication is intended for IT managers, IT architects, system programmers, security
administrators, and anyone who needs to plan for, deploy, and manage quantum-safe
cryptography on the IBM Z platform. The reader is expected to have a basic understanding of
IBM Z security concepts.

Authors

This book was produced by a team of specialists from around the world working remotely for
IBM Redbooks, Poughkeepsie Center.

Bill White is an IBM Redbooks Project Leader and Senior IT Infrastructure Specialist at IBM
Poughkeepsie, New York.

Didier Andre is a Senior Technical Specialist with expertise in IBM Z Security, working for the
IBM Washington Systems Center. He joined IBM in 2001, in France, as an experienced
system programmer supporting multiple clients before moving to the US in 2015 where he
worked for IBM Systems Lab Services as a security expert, leading the security team over 6
years.

Gregg Arquero is a Senior Software Engineer at IBM. He joined IBM in 2015 working with
the IBM z/OS® ICSF team. During his time on the ICSF team, he designed and developed
several key crypto solutions on IBM Z, such as early ICSF availability at IPL, AES-DUKPT
support, and quantum-safe algorithm support. He is also an avid innovator with over a dozen
granted patents by the USPTO. He received his bachelor’s degree in Computer Science from
Binghamton University.
© Copyright IBM Corp. 2022. ix

Ritu Bajaj is a Senior Design Researcher at IBM Z. As an empathetic designer and business
professional, she uses human-centered design and user experience (UX) research to create
value-add strategies for product innovation and sustainable business growth. She joined IBM
in 2020 and collaborated with the IBM Z Security Hardware teams. She led the sponsor user
program and client engagements for quantum-safe cryptography to gather feedback and
synthesize clients’ insights for starting IBM z16™ and enhancing ADDI with cryptographic
discovery. She conducted UX heuristic evaluations for the Fully Homomorphic Encryption
(FHE) toolkit and the IBM Z Security and Compliance Center dashboard. With dual degrees
in M.Design from Illinois Institute of Technology and an executive MBA from Michigan State
University, she applies her diverse knowledge in strategic and design thinking methodologies
to solve customers’ problems and explore use cases.

Joe Cronin is the North American lead Cybersecurity SME for IBM Systems Lab Services.
He has been a systems programmer and engineer, presenter, and educator for over 40 years.
His concentration has been in security architecture, governance, compliance, audit, identity
management, and design. He has a broad depth of knowledge across z/OS® and distributed
systems.

Anne Dames is a Distinguished Engineer in the IBM Z Cryptographic Technology area. She
received a B.S. degree in Mathematics from Johnson C. Smith and a M.S. degree in
Computer Science from the University of North Carolina at Charlotte. She has held various
positions in firmware development, software, and product engineering. She has years of
experience as a development leader for the IBM Hardware Security Module product line and
the IBM Common Cryptographic Architecture (CCA). She is currently leading a cross platform
development effort to use quantum-safe cryptography.

Henrik Lyksborg is a Senior IT Specialist working in the IBM Crypto Competence Center
based in Copenhagen, Denmark. He is a product owner for cryptographic appliances and
APIs, such as IBM Enterprise Key Management Foundation (EKMF), IBM Advanced
Cryptographic Service Provider (ACSP), and IBM Crypto Analytics Tool (CAT). Henrik studied
Electrical Engineering at the Technical University of Denmark. He joined IBM in 1991 with a
B.Sc. in Electrical Engineering and worked with IBM mainframe software licensing and client
software maintenance delivery processes. In 2017, he took on an IBM internet payment
platform job, dealing with Payment Card Industry (PCI) controlled business applications.
Currently, Henrik works with cryptographic key management, cryptographic services, and
cryptographic compliance controls to ensure that keys, certificates, and cryptographic
material are well managed and documented.

Alexandra Miranda is a z/OS System SSL function and system tester and developer, and a
z/OS Content Designer. She has been working at IBM since 2018, after graduating with a BS
in Computer Science and a BA in Creative Writing and Mathematics.

Maxwell Weiss is a Technical Specialist supporting the IBM Z Security portfolio for
Worldwide technical sales. One of his areas of focus includes supporting customer adoption
of IBM Hyper Protect Data Controller and IBM Enterprise Key Management Foundation Web
Edition (EKMF Web) for pervasive encryption key management. Before this role, Max was a
Technology Architect in the IBM Client Engineering for Systems, supporting pre-sales
activities for the IBM Z stack.

Thanks to the following people for their contributions to this project:

Todd Arnold, Scott Ballentine, Andy Coulson, Jessica Doherty, Guillaume Hoareau, Mike
Hocker, Rami Katan, Michael Osborne, Bob Petti, Eysha Shirrine Powers, David Raften,
Jacob Ruwald, Peter Spera, and the IBM Zurich Research team
IBM Corporation
x Transitioning to Quantum-Safe Cryptography on IBM Z

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an IBM Redbooks residency project and help write a book
in your area of expertise, while honing your experience using leading-edge technologies. Your
efforts will help to increase product acceptance and customer satisfaction, as you expand
your network of technical contacts and relationships. Residencies run from two to six weeks
in length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xii Transitioning to Quantum-Safe Cryptography on IBM Z

Chapter 1. Cryptography in the quantum
computing era

For decades, organizations used cryptographic algorithms to protect their most sensitive data
and communications in computer systems, networks, and storage devices. Imagine if an
adversary or cybercriminal can break those cryptographic algorithms that you relied on for
many years. What are the potential impacts on your business?

Once considered impossible, attacks that can compromise today’s cryptographic algorithms
can become possible with a powerful quantum computer. Your protected data can be stolen,
exposed, altered, disabled, or destroyed through new attack vectors that increased in the
quantum computing era.

Although quantum computers are still in their early stages of adoption, their use soon will be
more widespread. A single quantum computer can be capable of performing millions of
computations simultaneously.

Because quantum computers deal with probabilities, the problems they are good at solving
are exponential in nature. That is, today’s cryptographic algorithms might be threatened by
quantum computers, potentially exposing sensitive data.

Attackers are already harvesting protected data in anticipation of cracking the protection
algorithms sometime in the future. Therefore, it is important to take action now: assess the
cryptography methods that are used today to protect your data, applications, and systems;
understand the vulnerabilities in the quantum computing era; and evaluate the quantum-safe
capabilities that are offered with the IBM Z platform.

This chapter includes the following topics:

� 1.1, “When will quantum computers break cryptography” on page 2
� 1.2, “Why are quantum computers a threat” on page 4
� 1.3, “Impact of Shor’s and Grover’s algorithms” on page 7
� 1.4, “Cryptographic vulnerabilities possible with quantum computers” on page 9
� 1.5, “New algorithms to counter CRQC attacks” on page 11
� 1.6, “Quantum-safe capabilities with IBM Z” on page 13

1

© Copyright IBM Corp. 2022. 1

1.1 When will quantum computers break cryptography

The question of when quantum computers might break cryptography is often asked, but
unfortunately presents the threat as being in the future. Consider the following point from the
World Economic Forum, which was held in May 2021[1]:

For data that will require protection for decades, the threat is today. The impact is in the
future.

Many IT decision-makers plan to retain their data 11+ years into the quantum era as per the
IBM MD&I survey2. Their data includes personal identifiable information (PII), trade secrets,
intellectual property, and other sensitive digital assets. This information already is at risk
because they need to store it and keep it confidential for decades.

Although cybercriminals cannot easily break most encrypted data today, they might be able to
decrypt that data in the future by using a large quantum computer, also known as a
cryptographically relevant quantum computer (CRQC)3. Because it is unknown when YQK4
will happen, it is best to start looking at ways to protect your data now:

Act now—it will be less expensive, less disruptive, and less likely to have mistakes caused
by rushing and scrambling.5

1.1.1 Business risks

The cost of data breaches continues to increase, with strong encryption being the top
mitigating cost factor. The global average total cost of a data breach is $4.24 million per the
Ponemon Cost of a Data Breach 2021 Study.

Organizations that use strong encryption (such as AES with 256-bit keys) for data at-rest and
in-flight, had an average total cost of a breach of $3.62 million, compared to $4.87 million for
organizations that use weak or no encryption, which results in a difference of $1.25 million or
29.4%.

Most businesses expressed shared concerns for data, system integrity, and software
verification at risk with the potential threats of CRQC attacks. They recognized CRQC attacks
as a cybersecurity6 risk. However, organizations are just beginning the cryptographic
inventory7 phase of a quantum-safe journey.

Additionally, many organizations operate within highly regulated industries and must comply
with standards. The National Institute of Standards and Technology (NIST) has a
post-quantum cryptography standardization process to identify algorithms that are resistant to
attacks that might be started from quantum and conventional computers. BSI, a German
federal agency, requires the use of hybrid schemes in which both classical and quantum-safe
algorithms are used for protection in high-security applications.

1 Reference Is your cybersecurity ready to take the quantum leap? (2021)
2 An IBM Marketing study
3 CRQC is used to specifically describe quantum computers that are capable of breaking cryptographic algorithms

used on conventional computers.
4 YQK is a colloquial term, in reference to Y2K, used by Dario Gil, IBM SVP and Director of Research to describe the

point at which quantum computers could be powerful enough to brute force their way through today's encryption.
(The Hill: YQK is coming — time to get ‘quantum-safe’)

5 Reference NIST PQC Standardization Update-Round 2 and Beyond (2020)
6 Cybersecurity is the practice of defending computers, servers, mobile devices, electronic systems, networks, and

data from malicious attacks.
7 Cryptographic inventory is a strategic cybersecurity asset. It enables an organization to enforce a secure

cryptographic policy across IT infrastructure and react quickly to security issues; efficiently carry out strategic
transformations, such as migrating cryptography services to the cloud or deploying post-quantum cryptography.
2 Transitioning to Quantum-Safe Cryptography on IBM Z

https://www.weforum.org/agenda/2021/05/cybersecurity-quantum-computing-algorithms/
https://www.ibm.com/security/data-breach
https://csrc.nist.gov/CSRC/media/Presentations/pqc-update-round-2-and-beyond/images-media/pqcrypto-sept2020-moody.pdf
https://thehill.com/opinion/cybersecurity/3571693-yqk-is-coming-time-to-get-quantum-safe/

The post-quantum cryptography standards and work groups are to be the business driver for
security policy changes and crypto migration planning.

IT executives can proactively mitigate the risk of business disruptions that are caused by
CRQC attacks. Currently, some organizations decentralized small-size crypto groups that are
scattered across the IT business units, which causes disconnection and inertia against
cryptographic agility8. Many IT organizations still do not have a comprehensive view of the
cryptography in use in their institution because they lack cryptographic inventory tools and
skills for the broad cryptography landscape.

A few cryptographic services groups implemented proprietary crypto libraries and abstraction
layers that simplified managing the crypto updates and prepared them for cryptographic
agility. Businesses, such as banks, expressed concerns about the effect of quantum-safe
algorithms on system performance and latency.

Organizations, such as automobile manufacturers, must deal with programming resource
constraints, such as key length size and RAM, to accommodate the use of public key
quantum-safe algorithms and schemes in their new application development process.

Organizations also are interested in quantum-safe encryption to protect their long-lasting
sensitive data and future-proof it. Quantum-safe readiness is on most organizations’
roadmap. Some already benchmarked quantum-safe algorithms and explored cryptographic
inventory tools for application modernization.

1.1.2 Quantum threats and implications on data and identity

What will a cybercriminal be able to do with a quantum computer? Why do organizations
need to act now? Why is the data at risk9 today?

A cybercriminal who uses a powerful quantum computer to break the current cryptography
features the following the threats10 and implications:

� Passive attacks on confidentiality

Cybercriminals might harvest data communications, recover session keys from encrypted
channel negotiation, and decrypt communication transmissions. They can steal snapshots
of encrypted cloud data, extract keys that are protected by using public keys, and conduct
retrospective decryption.

Cybercriminals might decrypt lost or harvest historical data through cracking encryption
keys. An organization’s sensitive data that is protected by using today’s cryptography
might be vulnerable in the future. Encrypted data that is stolen during a data breach and
encrypted media that is improperly disposed or stolen are both at risk.

� Impersonation attacks on identities

Cybercriminals might create fraudulent code updates, insert malware, change
configuration settings, and create damage. They might transfer assets on a blockchain or
manipulate updates and forge transactions through fraudulent authentication. With
quantum threats, identity over the internet and software authenticity cannot be
guaranteed.

8 Cryptographic agility is about an information security system rapidly switching to alternative cryptographic
primitives and algorithms without making significant changes to the system’s infrastructure.

9 A measure of the extent to which an entity is threatened by a potential circumstance or event, and typically a
function of the adverse impacts that can arise if the circumstance or event occurs; and the likelihood of occurrence.

10 Any circumstance or event with the potential to adversely impact organizational operations, organizational assets,
individuals, other organizations, or the Nation through a system by way of unauthorized access, destruction,
disclosure, modification of information, or denial of service.
Chapter 1. Cryptography in the quantum computing era 3

Cybercriminals might impersonate a remote system or user and authenticate access, and
control systems. They can remotely control critical business infrastructure or transport
infrastructure. Systems that organizations are building today are at risk.

� Manipulate legal history by forging digital signatures

Cybercriminals might carry out fraudulent authentication by deriving private keys from
public keys. The legal underpinnings of digitalization are vulnerable because documents
can be forged by using a derived private key. Also, a guarantee of proof of authorship or
integrity no longer exists.

1.2 Why are quantum computers a threat

Cryptographic algorithms are based on mathematics, and with enough time and computing
resources they can be broken. Improvements in cryptographic algorithms always were
needed over time, as computers and digital circuits increase in speed and capacity.

However, the nature of the mathematical algorithms that can be used on quantum computers
is fundamentally different from what can run on conventional computers. Unfortunately for
cryptography, specific algorithms that run on quantum computers can be efficient at breaking
some current cryptographic algorithms.

To help understand how quantum computers are relevant to breaking current cryptography,
we first need to recognize the different types of computers and how they work. These
computers are sorted into the following categories:

� Conventional computers

These computers are the computers that we use every day. Their circuits operate on
binary values (bits) that can have only two states: a zero (off) or a one (on). Algorithms are
implemented as sequences of computer instructions that operate on these binary values.

� Supercomputers

A supercomputer is essentially a large and tightly coupled set of conventional computers,
with high-speed communications between them. They reduced or offloaded input/output
(I/O) routines by design to free up CPU cycles. Supercomputers are often used to solve
problems that can be deconstructed into many separate computations, which are carried
out in parallel on their computing nodes.

� Quantum computers

Quantum computers process data by using an entirely different mechanism than
conventional computers and supercomputers. Rather than representing data as binary
values (bits) that can have only two states, the property of superposition conceptually lets
quantum computers have an exponentially large number of possible compute states as
more of their quantum bits (or qubits) are entangled11. Hence, the more qubits a quantum
computer has available, the faster it can crack cryptographic algorithms.

The computational power of quantum computers is growing rapidly. In 2021, IBM launched
the 127 qubit Quantum Eagle processor with novel packaging and controls. In 2023, IBM
is to debut the 1,121 qubit Quantum Condor processor to explore potential Quantum
Advantages–problems that we solve more efficiently on a quantum computer than on the
world’s best supercomputers.

11 Quantum entanglement allows qubits to be perfectly correlated with each other. Using quantum algorithms that
exploit quantum entanglement, specific complex problems can be solved more efficiently than on classical
computers. For the technical definition, see:
https://quantum-computing.ibm.com/composer/docs/iqx/terms-glossary#term-entanglement
4 Transitioning to Quantum-Safe Cryptography on IBM Z

https://quantum-computing.ibm.com/composer/docs/iqx/terms-glossary#term-entanglement

Figure 1-1 shows the development roadmap of IBM Quantum.12

Figure 1-1 Roadmap for scaling IBM quantum technology

For a report on estimates of quantum resilience for current cryptosystems, see Quantum
Computing’s Implications for Cryptography13.

1.2.1 Cryptography overview

Various methods were used for thousands of years to protect information when it is stored or
sent to other people. Early methods were simple, like the Caesar Cipher, but they increased
dramatically over time, particularly as the attackers improved their ability to break the codes.
The fundamental feature of all cryptographic algorithms is the use of functions that are easy
to compute if you know the cryptographic key, but difficult if you do not know the key.

The cryptographic algorithms are used for the following types of protection:

� Confidentiality: This process keeps data secret from people who are not authorized to see
it. The unencrypted data is called plain text, and the encrypted data is called ciphertext.

� Integrity: This ability is used to prove that data was not modified.

� Authentication: This ability is used to prove who someone is, or who created a piece of
data.

� Nonrepudiation: This ability is used to prevent someone from claiming they did not create
a particular specific piece of data.

The cryptographic algorithms fall into the following categories, which are described next:

� Symmetric cryptography
� Asymmetric cryptography
� Hashing algorithms

12 See: https://research.ibm.com/blog/ibm-quantum-roadmap-20
13 National Academies of Sciences, Engineering, and Medicine. Quantum Computing: Progress and Prospects.

Washington, DC.
Chapter 1. Cryptography in the quantum computing era 5

https://nap.nationalacademies.org/read/25196/chapter/6
https://nap.nationalacademies.org/read/25196/chapter/6
https://research.ibm.com/blog/ibm-quantum-roadmap
https://research.ibm.com/blog/ibm-quantum-roadmap-20

Symmetric cryptography
Symmetric cryptography is used to encrypt and decrypt data. It is called symmetric because
the same key is used for encryption and decryption. Symmetric algorithms are generally fast,
and are used for everything from encrypting communications links to protecting banking
transactions.

In addition to encryption of data, the symmetric algorithms are used to construct methods of
providing integrity, authentication, and other operations that are important to security. For
integrity, these functions are called Message Authentication Codes (MACs).

The following symmetric cryptographic algorithms are most commonly used today:

� Triple-DES (TDES, 3DES, or TDEA)

TDES is an older algorithm, which is gradually being phased out and replaced with the
newer and stronger AES. TDES uses a key that is 112 bits or 192 bits long, and encrypts
data in 64-bit blocks.

� Advanced Encryption Standard (AES)

AES use keys that are 128 bits, 192 bits, or 256 bits, and it encrypts data in 128-bit blocks.
The larger key lengths and encryption block sizes make AES stronger than TDES. AES
also eliminates some design issues in TDES that make TDES susceptible to specific
classes of attacks.

The symmetric algorithms use complex mathematical and logical operations to combine the
data and the key in such a way that the ciphertext appears to be random values. With a strong
algorithm, the ciphertext cannot be examined and anything about the plain text or the key
cannot be determined.

Therefore, the only way to break the algorithm is to try all possible keys until you find the one
that works. On the average, this effort often means trying half of the possible keys. For
example, with AES using a 256-bit key, you must try an average of half of the 2256 possible
keys, which is a huge number.

Asymmetric cryptography
In asymmetric cryptography, which is also known as public key cryptography, two keys are
used in combination. This configuration contrasts with symmetric key cryptography, where the
same key is used for all operations. The asymmetric keys come in pairs that are known as the
public key and private key, which are mathematically related.

As the names imply, the public key can be seen by anyone, while the private key is kept
secret. The owner of the key generates the public and private keys together; then, it keeps the
private key secret while distributing the public key to anyone who needs it. It is impossible to
determine the value of the private key from the public key.

Several asymmetric cryptographic algorithms are commonly used. The two most common are
Elliptic Curve Cryptography (ECC), and RSA, which is named for its inventors Rivest, Shamir,
and Adleman. Unlike symmetric algorithms, differences exist in what the distinct asymmetric
algorithms can do.

ECC is based on the mathematics of elliptic curves. The curves are defined by polynomials,
and the ECC algorithm is based on multiplication of points on the curve. When a point is
multiplied by itself, the result is another point on the curve. When this multiplication occurs
many times, it is difficult to look at the final point that results from the multiplications and
determine anything about the original point.
6 Transitioning to Quantum-Safe Cryptography on IBM Z

The Elliptic Curve Digital Signature Algorithm (ECDSA) is used to compute and verify digital
signatures by using ECC mathematics.

The Elliptic Curve Diffie Hellman (ECDH) algorithm is used to negotiate shared symmetric
encryption keys between two parties. It is notable that mathematics of ECC do not provide a
way to encrypt and decrypt data. This creation is possible only by using ECC if you first create
a shared encryption key by using ECDH or a similar method and then, encrypt the data by
using that shared key with a symmetric algorithm, such as AES.

The security of RSA is based on the difficulty of factoring large numbers. The public key and
private key are each consist of a modulus and an exponent, where the modulus is the same
for each, but the public exponent and private exponent are different. The modulus is the
product of two large prime numbers, and security is based on the fact that it is infeasible to
factor the modulus to find those two large primes.

RSA encryption and decryption are based on modular exponentiation, where the value to be
encrypted is raised to the public or private exponent, but that computation is done by using
modular arithmetic that constrains the result to be less than the value of the modulus.

Whenever a value is raised to an exponent and then truncated according to the modulus,
information is lost, which makes the process difficult to reverse. RSA can be used to directly
encrypt data, and it is used for digital signatures by encrypting a hash of the data you want to
sign. It is also frequently used to encrypt keys to transport them to other parties.

Hashing algorithms
A hash algorithm does not “encrypt” data; instead, it creates a fixed-length digital “fingerprint”
(called a hash) from input data of any length. If even one bit of the input data is modified, the
computed hash is entirely different.

Cryptographic hash functions meet two criteria: First, if you know the hash value, you cannot
use it to learn anything about the content of the data that was hashed. Secondly, it is
infeasible to find a different set of data that produces the same hash value.

Recommended hash functions today are the SHA-2 and SHA-3 families, which offer versions
that create hashes 224 bits - 512 bits. The older hash functions SHA-1 and MD5 are no
longer considered secure, although they are still in use in some applications.

1.3 Impact of Shor’s and Grover’s algorithms

When available, a sufficiently strong quantum computer can perform specific mathematical
computations exponentially faster than a conventional computer or supercomputer. The most
powerful conventional computer can take millions of years to solve the integer factorization
problem to find prime factors for a 2048-bit composite integer.

The use of a quantum computer with Shor’s and Grover’s algorithms can break or weaken
some current cryptographic algorithms. Shor's and Grover's are cryptanalysis algorithms
when run on quantum computers.

Asymmetric algorithms derive security strength from one of three complex mathematical
problems:

� Integer factorization
� Discrete logarithm
� Elliptic curve discrete logarithm
Chapter 1. Cryptography in the quantum computing era 7

Examples of asymmetric algorithms and protocols are RSA, ECC, DH, ECDH, and ECDSA.
Consider RSA, which derives its strength from the difficulty in solving the integer factorization
problem. It is easy to multiply primes but difficult to take a composite integer and reduce it
back to the prime factors. The difficulty in factoring rises exponentially (not linearly) as the
number of bits in the key increases. The typical RSA key is 2048 bits. It is not possible with
today’s conventional computers to factor an integer with 2048 bits.

A sufficiently strong quantum computer can solve the factoring problems within hours with
Shor's algorithm because it provides an exponentially faster method for solving integer
factorization, discrete logarithm, and elliptic curve discrete logarithm problems.

Shor’s algorithm has the potential to completely break the RSA and Diffie-Hellman
cryptosystems and their elliptic curve-based analogs, but it cannot be used to attack
symmetric encryption or hashing algorithms. Therefore, asymmetric crypto algorithms are
most vulnerable to compromise.

Armed with Shor’s algorithm, an adversary or cybercriminal can take a public key and derive
the private key to enable impersonation and fraud attacks. Therefore, we need new
algorithms that are on different math problems for conventional computers to address a
CRQC attack by using Shor's algorithm.

Symmetric algorithms derive security strength from the difficulty in mounting a brute force
attack or exhaustive search exploration of all possible inputs to find the answer. For
cryptography, this trial-and-error technique is used to guess the correct value or key.

Examples of symmetric or hashing algorithms include AES, TDES, SHA-2, and CMAC. Brute
force attacks on symmetric and hashing algorithms take a long time to search the message
digest or key space to find the message digest that maps to data or correct encryption key.
For example, when found, the correct key can be used to decrypt encrypted data. For a key
with 256 bits, 2256 options exist to try in a worst case scenario.

A quantum computer can cut the symmetric algorithm strength in half by using Grover’s
algorithm. Grover’s algorithm does not break all symmetric algorithms, but it can be used to
speed up a brute force search for symmetric keys or reverse engineer a cryptographic hash.
The risks to symmetric and hashing algorithms can be mitigated by switching algorithms or
increasing key or hashing digest sizes because Grover’s algorithm are ineffective if the search
space is too large.

Grover’s quantum algorithm can affect hash-based password systems because only a few
passwords must be searched, and the low security level of TDEA and SHA-1 means they are
both at risk.
8 Transitioning to Quantum-Safe Cryptography on IBM Z

Table 1-1 lists the current security strength of specific symmetric and hash algorithms versus
post-quantum cryptography security levels. The security level and post-quantum
cryptography level values are a measure of the strength that is expressed in bits.

Table 1-1 Quantum computer consequences for current cryptographic algorithms14

1.4 Cryptographic vulnerabilities possible with quantum
computers

All of today’s approved cryptographic algorithms are strongly secure against conventional
computers, including supercomputers. For example, consider AES with a 128-bit key. On the
average, it takes 2127 guesses to find the right key. If we assume that a conventional computer
can try one key every microsecond, it takes about 5.4 X 1024 years to find the key, which is
not feasible. Even the fastest supercomputers can reduce this time only slightly.

However, the problem with quantum computers is that they do not have to take this approach
for some of today’s algorithms. In particular, the asymmetric algorithms can be broken almost
instantaneously by using Shor's algorithm, even for the longest keys in use.

The advent of quantum computers makes it possible to attack algorithms by using methods
that did not exist when attackers used conventional computers. Shor’s algorithm with a
sufficiently large quantum computer can easily break RSA or ECC algorithms. For this
reason, new asymmetric algorithms are being developed that use different mathematical
principles that are not subject to attack with Shor’s algorithm or any other known process on
quantum computers.

The risk to symmetric and hashing algorithms is significantly lower. Shor's algorithm cannot
be used against these, but another algorithm that runs on quantum computers that can
reduce their security.

Grover’s algorithm can be used to reduce search times, and it can be used to improve brute
force attacks to find a cryptographic key. When searching for something in a space of N total
items, Grover’s algorithm reduces the effort to √N. For example, a 256-bit AES key can be
found with difficulty of only 2128. However, this key is still considered unbreakable, and NIST
and other organizations believe that AES, SHA-2, and SHA-3 provide entirely adequate
security in the age of quantum computers.

Security level Post-quantum levela

a. Current standards indicate that algorithm and key-size combinations that were estimated at a
maximum security strength of less than 112 bits cannot provide conventional or quantum-safe
cryptographic protection (see NIST Special Publication 800-57 Part 1 Revision 5).

Symmetric Hash

<= 80 <= 40 2TDEA SHA-1

112 56 3TDEA SHA-224

128 64 AES-128 SHA-256

192 96 AES-192 SHA-384

256 128 AES-256 SHA-512

14 See The Impact of Quantum Computing on Present Cryptography
Chapter 1. Cryptography in the quantum computing era 9

https://arxiv.org/pdf/1804.00200.pdf
https://arxiv.org/pdf/1804.00200.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

Table 1-2 lists the security effect of various algorithms and protocols when a sufficiently
strong quantum computer is available.

Table 1-2 Effect of quantum computing on cryptographic schemes14

Organizations must consider integrating quantum-safe protection into their digital
transformation strategy and application modernization plans to mitigate these two
vulnerabilities with current cryptography. Consider the following points:

� Public key algorithms are broken by a large-scale quantum computer by using Shor’s
algorithm. Organizations can mitigate this vulnerability by migrating to quantum-safe
algorithms and schemes.

� Symmetric key and hashing algorithms are affected by a large-scale quantum computer.
Grover’s algorithm cuts in half the security strengths of symmetric and hashing algorithms.
Organizations can mitigate this vulnerability by increasing the key or message digest
sizes.

Secure processes rely on protocols that employ public key cryptography, including
those protocols that are used to secure websites for banking transactions, secure email, and
signing software. It will take 5 - 15 or more years15 to replace most public key cryptosystems
that are used now.

Cryptographic
algorithm

Type Purpose Quantum computer
impact

AES-256 Symmetric key Encryption Secure

SHA-256, SHA-3 Hash algorithm Hash functions Secure

RSA Public key Signatures, key
establishment

Broken

ECDSA, ECDH
(Elliptical Curve
Cryptography)

Public key Signatures, key
exchange

Broken

DSA (Finite Field
Cryptography)

Public key Signatures, key
exchange

Broken

15 Refer to Getting Ready for Post-Quantum Cryptography, then search for “5 to 15 or more years”
10 Transitioning to Quantum-Safe Cryptography on IBM Z

https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04282021.pdf

1.5 New algorithms to counter CRQC attacks

As data value grows and the required protection increases exponentially, a sense of urgency
exists to protect long-lasting data from potential CRQC attacks. Organizations must
safeguard data today with new cryptographic algorithms that protect against potential future
CRQC attacks that might affect system integrity and core business infrastructures.

Researchers and standards bodies are moving to address the threat of CRQC attacks. They
are identifying quantum-safe algorithms to protect conventional computer workloads and
data.

But what makes an algorithm quantum-safe? Algorithms are based on mathematical
problems with no known quantum computer speedup. Five categories of cryptographic
schemes are believed to be quantum-safe (see Table 1-3). Current quantum-safe algorithm
candidates are based on these schemes.

Table 1-3 Categories and examples of quantum-safe algorithm candidates

1.5.1 Quantum-safe algorithms

Currently, new cryptographic algorithms are being developed to safeguard against attacks
from conventional or quantum computers. This effort is happening through a competition that
is sponsored by NIST, where worldwide cryptographic experts submit candidate algorithms
and analyze each other’s submissions.

Category Description

Lattice-based crypto Crypto schemes from a field of mathematics that is called the geometry of
numbers. The security of these schemes is based on the difficulty of solving
mathematical problems over lattices; for example, the Shortest Vector
Problem (SVP) and the Closest Vector Problem (CVP), such as Examples
include IBM CRYSTALS-Kyber and CRYSTALS-Dilithium, Falcon.

Multi-variate crypto A group of cryptosystems that is based on the difficulty of solving nonlinear
(usually quadratic) equations over finite fields. The idea is that solving
systems of equations in many variables is difficult under constraints
depending on the scheme. Examples include Rainbow and GeMSS.

Code-based crypto This cryptography uses error-correcting codes to build public key
cryptography. Examples include Classic McEliece and BIKE.

Hash-based crypto This cryptography includes digital signature schemes that are based on
cryptographic hashes; for example, SPHINCS+.

Isogeny crypto Super singular elliptic-curve isogeny cryptography is based on the
isogenies or mappings between two elliptic curves; for example: SIKE.

Note: Quantum-safe algorithms run on conventional computers to protect data; the new
algorithms that can break some conventional cryptography run on quantum computers.
That is, quantum-safe algorithms do not run on quantum computers; instead, they run on
conventional computers.
Chapter 1. Cryptography in the quantum computing era 11

The algorithms are separated into the following categories:

� Digital signature algorithms
� Key encapsulation mechanisms and key-establishment algorithms

NIST indicated that after careful consideration during the third round of the NIST Post
Quantum Cryptography Standardization Process, it identified four candidate algorithms for
standardization. The primary algorithms NIST recommends to be implemented for most use
cases are CRYSTALS-Kyber (key-establishment) and CRYSTALS-Dilithium (digital
signatures). In addition, the signature schemes Falcon and SPHINCS+ also are to be
standardized.

Algorithms to be standardized
For public-key encryption and key encapsulation mechanism (KEM), CRYSTALS-Kyber is to
be standardized.

For digital signatures, the following algorithms are to be standardized:

� CRYSTALS-Dilithium
� Falcon
� SPHINCS+

CRYSTALS-Kyber (key-establishment) and CRYSTALS-Dilithium (digital signatures) were
selected for their strong security and excellent performance, and NIST expects them to work
well in most applications.

Falcon also is be standardized by NIST because use cases might exist for which
CRYSTALS-Dilithium signatures are too large. Also, SPHINCS+ is to be standardized to avoid
only relying on the security of lattices for signatures.

Also, the following candidate KEM algorithms are to advance to the fourth round:

� BIKE
� Classic McEliece
� HQC
� SIKE

IBM Research® scientists were involved in the development of CRYSTALS-Kyber,
CRYSTALS-Dilithium, and Falcon. They also made contributions to the development of
SPHINCS+ and SIKE.

IBM implemented two of the leading finalists in this competition: CRYSTALS-Dilithium for
digital signatures and CRYSTALS-Kyber as a key encapsulation mechanism. By using these
algorithms, you can ensure that your data is still protected in the future when large-scale
quantum computers are available. Neither of these algorithms is subject to attack by using
Shor’s algorithm or any other known quantum computer algorithm.

For information about these quantum-safe algorithms, see the following web pages:

� CRYSTALS-Dilithium
� CRYSTALS-Kyber

The security of these two algorithms is based on the difficulty of solving the
learning-with-errors (LWE) problem over module lattices. The LWE problem involves solving a
system of linear equations, where an error of ±1 was intentionally introduced. Because of the
errors, the usual methods of solving a system of linear equations do not work, which makes it
infeasible to solve for the secret value.
12 Transitioning to Quantum-Safe Cryptography on IBM Z

https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/dilithium/index.shtml

For more information about the IBM Z cryptographic stack, see 4.1, “IBM Z cryptographic
components overview” on page 48.

1.6 Quantum-safe capabilities with IBM Z

IBM z16 supports quantum-safe cryptography in the following ways:

� Infrastructure that protects the integrity of the system
� API functions that can be used by application programs

These methods are described next.

1.6.1 Quantum-safe infrastructure in IBM z16

IBM z16 adds features to protect the system from attacks, including threats that might use
quantum computers. In particular, the system includes a secure boot feature in which it is
protected with quantum-safe technology through the many firmware layers that are loaded
during the boot process. Only authentic, IBM-approved firmware is accepted.

This hardware-protected verification of the firmware uses a dual-signature scheme, which
uses a combination of quantum-safe and classical digital signatures. The protection is
anchored in the IBM Z Root of Trust 16.

Quantum-safe mechanisms also were added to the IBM Z cryptographic infrastructure. The
Crypto Express Hardware Security Module (HSM) now uses a quantum-safe dual-signature
scheme similar to the one described for the IBM Z server boot process.

Changes were made to the TKE feature to use quantum-safe cryptography when
authenticating Crypto Express8S (CEX8S) coprocessors, verifying replies from the CEX8S
coprocessors, and protecting key parts in flight for the Common Cryptographic Architecture
(CCA). Finally, the IBM Z pervasive encryption functions were updated to use quantum-safe
mechanisms for key management.

Other IBM z16 enhancements include the following examples:

� IBM z/VM® guest support for quantum-safe APIs on virtualized Crypto Express features
for IBM z/OS, Linux on IBM Z, and IBM VSE

� IBM RACF® quantum-safe encrypted VSAM database support, and other base
infrastructure crypto-related enhancements

Note: IBM Crypto Express8S (CEX8S) for IBM z16 includes implementations of the
CRYSTALS-Dilithium and CRYSTALS-Kyber algorithms; the IBM Crypto Express7S
(CEX7S) for IBM z16 and IBM z15™ includes CRYSTALS-Dilithium support.

16 Root of Trust is a source that can always be trusted within a cryptographic system
Chapter 1. Cryptography in the quantum computing era 13

1.6.2 Quantum-safe API functions available to application programs

Integrated Cryptographic Services Facility (ICSF) provides APIs. ICSF is a software element
of z/OS. ICSF works with the hardware cryptographic features to provide secure, high-speed
cryptographic services in the z/OS environment. ICSF provides the application programming
interfaces by which applications request the cryptographic services. These services include
(but are not limited to) encrypting data by using software and Crypto Express HSM or CP
assist for cryptographic (CPACF) functions.

ICSF offers two different cryptographic APIs for use by application programs:

� Common Cryptographic Architecture (CCA): An IBM proprietary API that includes
general-purpose cryptographic functions and the special functions that are required by the
payments industry.

� Enterprise PKCS#11: A standardized API that is widely used on many systems for many
applications.

CCA and PKCS#11 provide API functions to support quantum-safe digital signatures by using
CRYSTALS-Dilithium, and to support key agreements by using a hybrid CRYSTALS-Kyber
method. You can generate the public and private keys, generate and verify digital signatures,
and negotiate a shared symmetric key by using the key agreement protocol.

Although the new algorithms are needed to provide quantum-safe asymmetric cryptography,
the CCA and PKCS#11 APIs contain the functions you need to implement quantum-safe
symmetric cryptography and hashing.

You can encrypt data by using AES, with key sizes ranging 128 - 256 bits. You can use the
SHA-2 or SHA-3 hash functions, with hash lengths up to 512 bits. In combination with the new
digital signature and key agreement algorithms, this configuration gives a complete suite of
quantum-safe cryptographic algorithms.

For digital signatures, one common approach today is to implement dual signatures where
data is signed by using the older algorithms, such as Elliptic Curve, and the new
quantum-safe algorithms. By doing so, you can meet standards that require the older
algorithms, while also providing the higher level of protection that is offered by the
quantum-safe algorithms. Meting those standards is easy by using CCA or Enterprise
PKCS#11 on IBM z16 because the digital signature APIs now offer both classes of signature
algorithms.

Finally, the Enterprise Key Management Foundations (EKMF) key management system now
supports the management of CRYSTALS-Dilithium and CRYSTALS-Kyber keys. This support
allows you to manage these new key types with the same tool that was available to manage
other types of cryptographic keys.
14 Transitioning to Quantum-Safe Cryptography on IBM Z

Chapter 2. The journey to quantum
protection

As discussed in Chapter 1, “Cryptography in the quantum computing era” on page 1, we are
entering a new cryptographic era. The cryptographic landscape is changing about the kinds
of cryptographic algorithms that are implemented across the enterprise today and the ways
they are used. For most organizations, it is a journey to quantum protection. IBM is leading
the way, assisting businesses and organizations on this journey.

In this chapter, we discuss some of the lessons learned as IBM embarked on the
quantum-safe journey and the guidance that was provided by other organizations, such as
the National Cybersecurity Center of Excellence (NCCoE), Cloud Security Alliance (CSA),
and the European Telecommunications Standards Institute (ETSI). Standards are still
evolving in this space and the required changes likely need significant planning and
preparation. Every standard that uses public key cryptography will be affected.

IBM learned a great deal during the process of implementing quantum-safe technology in the
IBM Z platform. We share some of the details of that journey and steps that can be helpful to
your journey in this chapter, which includes the following topics:

� 2.1, “Quantum-safe cryptographic experiences” on page 16
� 2.2, “Starting the quantum protection journey” on page 21

2

© Copyright IBM Corp. 2022. 15

2.1 Quantum-safe cryptographic experiences

IBM Z began its own quantum-safe journey and with any new technology comes new
challenges. We found it necessary to survey our system landscape and at the same time use
knowledge and insights from our IBM Quantum and IBM Zurich Research teams. We also
engaged the broader ecosystem, including vendors, legal, and internal organizations that are
outside of the IBM Z team with an interest in the subject.

The IBM Zurich Research team started several activities that were focused on developing
practical cryptographic solutions that are resistant to the threats that are posed by quantum
computers. With these trusted advisors, the IBM Z team has a tremendous opportunity for
collaboration and co-creation of exceptional solutions.

In this section, we share IBM experiences and lessons learned (see Table 2-1) in pursuing a
quantum-safe cryptographic implementation on IBM Z.

Table 2-1 IBM experiences and lessons learned

2.1.1 Educating the team

IBM Z developers and IBM Zurich researchers have a close relationship. Researchers serve
as trusted advisers to developers. Before beginning the quantum-safe transition journey,
several educational briefings were held about the topic of quantum-safe cryptography and the
effects that quantum computing has on classical cryptography. These briefings served to
educate IBM senior management and senior technical leadership in the IBM Z organization.

The leader’s buy-in was critical for allocating the needed resources to establish the IBM Z
quantum-safe transition project. A leader for the project was selected, followed by the
selection of the core team.

The security stakeholders in the overall organization were then educated on the topic. It was
important that the key security stakeholders be educated as their time, effort, and expertise
also was required.

The project goals were set forth with the intent of establishing an enterprise-wide effort and a
strategy was needed. It was important to establish a diverse group of experts from the
organization, including those people responsible for hardware, firmware, software, security
architecture, and secure engineering.

Educate the team Build a cryptographic inventory and
create a roadmap

Design and execute with cryptographic
agility in mind

� Educate the security teams
and stakeholders

� Follow standards for
community and quantum
computing

� Learn about quantum-safe
crypto options

� Research migration best
practices

� Engage with Legal

� Build cryptographic inventory
(reusable security asset) where
crypto is used

� Perform a quantum risk
assessment–gap analysis

� Evaluate vendor products
� Develop plans for use of stronger

cryptography
� Understand open source effect
� Use a buttom-up approach

� Manage internal and external
dependencies

� Make it simple to change the
underlying crypto from one algorithm,
method, or protocol to another

� Remember crypto algorithms are
considered secure until broken

� Prepare for future changes
� Develop new applications as flexible

as possible to react to new
developments
16 Transitioning to Quantum-Safe Cryptography on IBM Z

The core team carefully followed the National Institute of Standards and Technology (NIST)
Post-Quantum Cryptography (PQC) standardization process and the activities of institutional
bodies with governance over standards and regulations that are related to public key
cryptography and IBM Z interests.

The core team spent time learning about the new quantum-safe algorithms and the mitigation
options for various use cases. The IBM Z team researched transition best practices.

The team discussed options carefully with the IBM Zurich Research team to ensure that the
proposed actions were secure. They later engaged in more detailed design sessions and
created and evaluated proposals on a case-by-case basis.

As the topic of quantum-safe cryptography was starting to be understood by the industry, we
found it necessary to establish our own best practices with our research colleagues. The IBM
Z team also worked closely with the IBM legal team and sought their guidance to ensure the
methods and actions that were taken were in line with approved guidelines.

Consultation with Legal is a common and important practice when embarking on the use of
new technology as a product manufacturer. IBM Z held kickoff sessions with the technical
leaders so they had some insight into the next steps in the process.

2.1.2 Building a cryptographic inventory

The next critical stage was to create a cryptographic inventory. During this process, the goal
was to discover the cryptography that was in use on the platform that leads to the creation of
a roadmap to address gaps.

The core IBM Z team worked with IBM Zurich Research to establish a questionnaire that was
used to capture important information. The questionnaire was tailored for the IBM Z platform,
including several areas, such as hardware, firmware, operating systems, virtualization,
applications, solutions, and data elements.

Sessions were held with the component technical leaders to answer any questions they might
have about the questionnaire, and how the questionnaire was to be completed. Each
component leader worked with their team to complete the questionnaire and return it to the
core team. The questionnaire covered nine key areas that were related to cryptography and
cybersecurity in general (see Table 2-2 on page 18).
Chapter 2. The journey to quantum protection 17

Table 2-2 Cryptographic inventory questionnaire

Each component leader was asked to gather this information and provide for review by the
IBM Z core team. Other information might need to be included in the questionnaire by your
organization; however, Table 2-2 on page 18 is a good place to start.

The IBM Z core team reviewed the questionnaires and helped each component team develop
preliminary plans for the use of stronger cryptography for symmetric crypto and hashing or
quantum-safe crypto schemes for asymmetric crypto. IBM Z looked at areas where crypto
was being used and looked for places where cryptographic protections might be added.

Area Information collected

Identity � Name of component or application
� Feature or function that uses crypto
� Person responsible for component and contact Information

Symmetric crypto � Algorithm
� Function (encryption, decryption)
� Symmetric key size
� Length of time data needs to be kept secret
� Sensitivity level of the data protected (H/M/L)

Asymmetric crypto � Algorithm
� Function/protocol/method
� Asymmetric key size

Hashing � Algorithm
� Digest size

Crypto services � Crypto provider
� Crypto provider product version
� Vendor name
� How is crypto provided? (HSM, software library)
� How is the crypto implemented? (hardware, software)
� How is crypto provider version kept current?

Interoperability � Do you control the full stack?
� Do you work with a vendor or partner?
� Is the partnership internal or external to the team or

organization?

Policies/standards/regulations � Are there policies governing the selection and use of the
cryptography? If so, which?

� Are there standards or regulations governing use of the
cryptography? If so, which?

� Are there associated configuration files?
� Can the component’s crypto “state” or status, configuration

status, and so on, be queried or monitored?
� Consider cyber resilience: Are there single points of failure

or simple denial of service (DoS) choke points?

Key management � Where do the keys come from?
� Where are the keys stored?
� Is a key management system or key server used?
� Is a key transport protocol used?
� Are the derived or created keys used to wrap or protect other

keys?

Preliminary assessment Has a gap been identified? (Crypto being used must be updated,
mitigation plan is needed?)
18 Transitioning to Quantum-Safe Cryptography on IBM Z

This iterative process led to fruitful discussions. Design review sessions were held, and
research provided guidance and feedback about the plans and strategies that were
developed. Because the cryptographic inventory is a living document, the inventory
documentation must be updated as changes are made.

2.1.3 Creating a roadmap

After the IBM Z core team understood the affected areas, it was necessary to prioritize the
changes. We developed a multi-phase roadmap with the goal to update protections of the
most important areas first.

The IBM Z team also considered areas where the changes were simpler to make. Some
items needed to be implemented day one and some items were to be updated over time.
Several factors influenced the decisions about where items land on the roadmap.

Evaluating dependencies was critical. The uncertainties, costs, and the value of the option to
the system also needed to be considered. The core team had dependencies inside and
outside IBM Z, which affected prioritization of changes.

Some of the dependencies included the following examples:

� NIST PQC Standardization Process algorithm recommendations

� Other standards and guidelines not yet updated; for example, IETF community, including:

– TLS/SSL/SSH standards
– PKI standards for certificates
– network security
– communication protocols

� Availability of quantum-safe hardware products from vendors

� Dependencies on IBM software and hardware solutions

� Availability of crypto libraries and hardware that supports the quantum-safe algorithms

The IBM Z approach was to protect the system infrastructure (such as core boot paths and
related firmware components) and key security components, such as the Crypto Express
hardware security module (HSM) and Trusted Key Entry (TKE). At the same time, customers
had to be provided with the capabilities to begin the use of and experimenting with the
quantum-safe technology. The IBM Z team considered areas where we controlled the entire
stack and dependencies were internal to our system. Implementation complexity might be a
function of technology or unresolved dependencies.

After prioritizing the work based on the risks and dependencies, a multi-phase roadmap was
created. Flexibility was maintained in the roadmap as discoveries during the plan execution
phase were expected.
Chapter 2. The journey to quantum protection 19

2.1.4 Designing and running with cryptographic agility in mind

The key to the designs was the need to include cryptographic agility. This became evident
because of some uncertainties that were identified early in the process and the necessity to
create designs that lend themselves to change with new crypto algorithms in the future.

During the execution phase, the IBM Z team used the following options that were based on
the identified use cases:

� Updated encryption by migrating to AES encryption by using 256-bit keys

� Updated hashing algorithms to support SHA-256 or higher

� Implemented dual digital signing schemes by using classical and quantum-safe algorithms

� Implemented hybrid key exchange mechanisms by using classical and quantum-safe
algorithms

At this stage of the quantum-safe journey, these options were the most reasonable for the use
cases.

The IBM Z team identified all of the operating environments where algorithm support and
secured quantum-safe libraries were needed. Vendors were contacted to understand their
quantum-safe roadmaps and plans. Based on feedback from these vendors, the IBM Z
roadmap was revised.

Discussions with the IBM Zurich Research team, the IBM Quantum team, the IBM Security®
team, and IBM Legal team continue as changes were implemented and next steps were
documented.

IBM Z designs were created with agility in mind to be prepared for the transition when new
standards guidance is provided and to support inevitable future changes to cryptographic
algorithm requirements. The purpose also was to lay a foundation for which IBM Z can make
the other areas of the system quantum-safe over time.

2.1.5 Quantum-safe journey in review

This high-level overview of the journey that was taken by IBM Z can be used to help start your
quantum-safe journey. The IBM Z journey and the recommendations of other experts in the IT
industry included the following takeaways:

� Obtain senior level management buy-in

� Educate your organization on quantum risks and quantum-safe cryptography

� Create a quantum-safe crypto core team

� Inventory current crypto in use

� Control access to the inventory

� Identify areas that are most vulnerable

� Research cryptographic agility and quantum-safe cryptographic algorithms to determine
which algorithms suit your use cases

� Identify crypto API providers and crypto hardware to accelerate performance

� Develop implementation validation and testing tools

� Identify all communications protocols with quantum-vulnerable crypto algorithms

� Identify automated crypto discovery tools

� Update the processes and procedures of developers, implementers, and users
20 Transitioning to Quantum-Safe Cryptography on IBM Z

� Develop a risk-based approach, considering security requirements, business operations,
and mission impact

� Identify a transition timeline and resources

� Prepare to follow strategies to protect digital assets and systems

2.2 Starting the quantum protection journey

Several stages must be taken along the journey. Each organization has different cryptography
use cases and usage constraints. It is important that the collateral that is created by each
team be reviewed to provide the best options and plans for your situation.

Although no one-size-fits-all solution exists, general steps and guidance can be beneficial.
Consider your cryptographic use in three broad areas:

– Infrastructure
– Applications
– Data protection

2.2.1 Following industry guidance

Several organizations formed task forces or working groups to discuss quantum-safe
cryptography and offer their guidance. We recommend that you review the work being done
by these groups. Experts in the field provide insights that can prove to be useful in your
situation.

National Cyber Security Center of Excellence (NCCoE)
NCCoE formed a Post-quantum cryptography (PQC) project. The project goal is the
development of practices in the form of white papers, playbooks, and demonstrable
implementations for organizations to ease the transition from the current set of public key
cryptographic algorithms to replacement algorithms that are resistant to quantum
computer-based attacks.

For more information, see this NCCoE web page.

Electronic Telecommunications Standards Institute (ETSI)
The ETSI Cyber Quantum Safe Cryptography (QSC) Working Group aims to assess and
make recommendations for quantum-safe cryptographic primitives, protocols, and
implementation considerations. These considerations are based on the state of academic
cryptography research and quantum algorithm research, and industrial requirements for
real-world deployment.

For more information, see this ETSI web page.

Cloud Security Alliance (CSA)
CSA formed a quantum-safe security working group. The goal of this working group is to
support the quantum-safe cryptography community in the development and deployment of a
framework to protect data that is in movement or at rest.

For more information, see this CSA web page.
Chapter 2. The journey to quantum protection 21

https://www.nccoe.nist.gov/crypto-agility-considerations-migrating-post-quantum-cryptographic-algorithms
https://www.etsi.org/technologies/quantum-safe-cryptography
https://cloudsecurityalliance.org/research/working-groups/quantum-safe-security/

French National Cybersecurity Agency (ANSSI)
ANSSI is committed to ensuring that public administrations, public services, and businesses
can take full advantage of a secure and trustworthy digitalization. The goal is to provide
direction to industrials developing security products and outlining the transition agenda for
quantum-safe cryptography.

For more information, see this ANSSI web page.

2.2.2 Start now

The threat that quantum computers pose to our current cryptographic systems is well
known. Even though large-scale quantum computers are not yet here, it is critical to take
action well before their arrival. Organizations need to be planning now, for the upcoming
transition to new quantum-resistant cryptographic algorithms. Failure to do so may mean
that your information will not be protected from these future attacks.

- Dustin Moody, Mathematician, Post-Quantum Cryptography Project Leader, National Institute
of Standards and Technology (NIST)

For the last several years, experts were urging organization to begin planning for the
replacement of hardware, software, and services that use the cryptography that is likely
subject to attack by a quantum computer.

Based on history, it can take a long time to make changes in all the places where change is
required. The initial inventory phases can show surprising findings. This part of the process is
often referred to as crypto discovery. Not only do you find crypto that must be migrated, but
you might also find areas where cryptographic protections are not in place or that
cryptography is not correctly implemented and not suitable for the intended purpose.

You might discover that specific source code is no longer available or build tools are no longer
available, which makes change difficult and time-consuming. It is advantageous to find
automated tools that help with the inventory process.

The authors of code modules might be unknown or no longer work for the company. The new
algorithms are not drop-in replacements. Key sizes, signature sizes, performance, and so on
must be considered.

Any number of your IT professional staff might need to get involved in your quantum-safe
journey (see Table 2-3 on page 23 for examples).
22 Transitioning to Quantum-Safe Cryptography on IBM Z

https://www.ssi.gouv.fr/en/publication/anssi-views-on-the-post-quantum-cryptography-transition/

Table 2-3 Involvement of IT professionals for the quantum-safe cryptography journey

Another important reason to start the quantum-safe journey now is because you do not want
to keep creating assets that are susceptible to quantum attacks. Use protection methods
today so that today’s data is protected in the future. New technology takes time to develop,
test, and deploy. To avoid costly mistakes and to ensure you have the technology to address
your use cases, organizations must start now.

2.2.3 Building your inventory

Consider creating a data inventory and cryptographic inventory:

� The data inventory must contain information about your critical data assets. It is a
comprehensive catalog of the data assets in the enterprise.

Document important information about the data protection requirements and how long that
protection must be in place. Also, record any standards or regulations that govern the
protection of the data.

� The cryptographic inventory must contain information about where and how cryptographic
algorithms are used.

The cryptographic inventory provides you with the information you need to create your
roadmap and plan. In specific cases, tools do not exist that automate the process of
inventorying the crypto in use.

Using a questionnaire
A questionnaire can be a useful tool for gathering the information from the key stakeholders.
The questionnaire helps stakeholders understand for what they need to look. The
questionnaire can be used with the tools that are available to compile the baseline inventory.
IBM Z provides tools that can help with crypto discovery. For more information, see
“Establishing a cryptographic inventory” on page 58.

Stakeholder Roles

IT security � Chief information security officer
� Chief security architect
� Key management personnel
� IT security personnel
� Mainframe security administrator
� Enterprise security Architect

Networking � Network administrator
� Network architect

Auditors � Security auditor
� Financial regulation office
� Compliance officer/auditor

Applications � Application architect
� Application programmer
� Application owner

Management
systems

� System administrator
� Hardware administrator
� Storage administrator

External parties � Customers
� ISV representative
� Business partners
Chapter 2. The journey to quantum protection 23

Maintaining and securing the inventory
Maintaining and securing the inventory is critical. Make sure you treat the inventory as the
security-sensitive artifact that it is. Access to the contents must be controlled. Component
owners can access their information but not the information of other components unless a
need to know exists and collaboration among teams is needed.

Performing a gap analysis
By using the inventory, you can perform a gap analysis that leads to the creation of your
roadmap. More than likely, you discover that you cannot change every area that is identified in
your inventory. Therefore, you must prioritize.

Protect the most critical assets first and make changes so that you do not continue to use
vulnerable cryptography where possible.

Determining dependencies
Dependencies can determine the location and timing of changes on your roadmap. You must
have a mitigation strategy in place. This strategy includes knowing the mitigation options that
are available to you and when to use those mitigations.

It is critical that your strategy include extensive testing. Solutions must be prototyped to
understand usability and performance effects. Some of the mitigations involve the use of
longer keys and artifacts, which requires more space and resources. It is critical that you
review your threat models with your secure engineering team to ensure you did not
inadvertently introduced a vulnerability.

2.2.4 Knowing your options

After you understand where crypto is being used, it is critical to know your mitigation options.
A transition strategy is needed that is based on industry guidance and the use cases that your
organization must address. It is important to perform a risk assessment to inform your
decisions about your transition roadmap.

The primary options include the following examples:

� Strengthening symmetric and hashing algorithms by increasing key sizes for strong
algorithms, such as AES, to at least 256 bits and hashing digest sizes to at least SHA-256,
depending on your use case.

� Implement dual signing. A dual signature consists of at least two signatures on a common
message. According to guidance provided by NIST, one signature is generated with a
NIST-approved signature scheme as specified in FIPS 196, while the other signatures can
be generated by using a different signature algorithm.

For quantum-safe, the second signature is a quantum-safe signature
(CRYSTALS-Dilithium is used for IBM z16). The signatures must be parsed and verified
separately; if either fails, the signature for the object fails.

� Implement hybrid key establishment schemes. This scheme is a combination of two or
more components in which cryptographic key-establishment schemes are used.

According to guidance from NIST, the scheme is considered secure if at least one of the
schemes remains secure. Therefore, one of the components of the hybrid scheme must
be NIST-approved; for example, a discrete-logarithm based scheme from NIST SP
800-56A or an integer-factorization scheme from SP 800-56B, and the other component is
a post-quantum cryptography scheme.
24 Transitioning to Quantum-Safe Cryptography on IBM Z

NIST SP 800-56C describes a hybrid key establishment construction. The specification
describes a process that allows a key derivation method permitting a shared secret1 “Z” to
be concatenated with a value protected by a quantum-safe key encapsulation mechanism
(KEM).

Each specific use case must be evaluated to determine whether the implementation costs,
performance reduction, and solution complexity can be contained. The hybrid and dual
schemes require a security review to ensure that the security-related implementation errors
were not introduced.

For more information about common cryptography use cases with challenges a
cryptographically relevant quantum computer (CRQC) can present and the quantum-safe
solutions that are provided by IBM Z, see Chapter 3, “Using quantum-safe cryptography” on
page 27.

2.2.5 Incorporate cryptographic agility

It has probably become clear that piece by piece, enterprises must change the underlying
cryptography that they use. However, this instance is not the last time such a change is
required. This necessary change is an opportunity to rethink how applications use complex
cryptography such that future changes, updates, and patches are much simpler to apply.

Cryptographic agility is the key for cybersecurity.

When we think of cryptographic agility, we must broaden our view of its scope beyond
cryptographic migration such that we focus on only swapping from one crypto algorithm or
standard to another because of the complexity of the problem. We must think about how we
transition to architectures that offer agility for ongoing cryptographic migrations over time.

We know that cryptographic algorithms break or become obsolete. IBM Think® of the
dimensions of cryptographic agility as areas where we can focus on agility. The topic of agility
is relevant throughout the lifecycle of crypto from its definition and introduction into standards
through its retirement as being obsolete or no longer secure.

The early phases of a cryptographic algorithm's lifecycle are handled by experts in the field in
academia and industry. Table 2-4 lists the cryptographic agilities that are most important to
our discussion.

Table 2-4 Cryptographic agilities

1 Known only to the entities involved in a communication. Possession of that shared secret can be provided as proof
of identity for authentication.

Agility Definition

Algorithm Ability to select algorithms in real time based on their combined security
functions or organizational policy

Protocol Ability to move to new versions of a protocol, such as 1.1 to 1.2 to 1.3, for
TLS

Implementation Ability to add crypto features or algorithms to hardware or software, which
results in new, stronger security features

Platform Ability to adapt to platform-specific constraints or support for cryptographic
operations

Retirement Ability to retire crypto systems that became vulnerable or obsolete
Chapter 2. The journey to quantum protection 25

Cryptographic agility is an active area of research. Guidance that we see coming out of
research areas already recommends no longer hardcoding crypto specifics in applications.
Instead, the use of a higher-level abstraction layer allows for passing in those specifics so that
they can be changed when needed without changing the application when possible.

From a broader standpoint, cryptographic agility is about an information security system’s
ability to rapidly switch to alternative cryptographic primitives and algorithms without making
significant changes to the system’s infrastructure.

When considering your cryptographic strategy in light of quantum-safe transition, spend some
time studying this topic and explore how to best improve your cryptographic agility.

For more information and an example, see “Considering cryptographic agility” on page 61.
26 Transitioning to Quantum-Safe Cryptography on IBM Z

Chapter 3. Using quantum-safe
cryptography

In this chapter, various use cases are introduced to illustrate the threats that many
organizations face with the rise of quantum computing for use cases that are related to
confidentiality, integrity, authentication, and nonrepudiation.

Across these use cases, the challenges are addressed and how the quantum-safe
capabilities that are provided with IBM z16 can help to overcome these challenges and
ensure the security of sensitive and valuable data into the future.

Also, each use case includes applications for quantum-safe encryption capabilities across
different industries and the specific enhancements with IBM z16 that enable these adoption
patterns.

This chapter includes the following topics:

� 3.1, “Protecting sensitive data” on page 28
� 3.2, “Use case: Sharing keys securely” on page 31
� 3.3, “Use case: Message integrity and secure logging” on page 37
� 3.4, “Proof of authorship” on page 42

3

© Copyright IBM Corp. 2022. 27

3.1 Protecting sensitive data

Classical cryptographic algorithms are widely used to protect data that is at rest and in flight.
Cryptographic algorithms are used for having the capabilities of secrecy, integrity,
authentication, and nonrepudiation.

Organizations use symmetric keys and public key encryption for data protection schemes.
Most organizations encrypt sensitive data to protect it against insider threats, unauthorized
user access, and accidental data exposures.

An organization’s data is at risk on the internet and communication network when Shor’s
quantum algorithms are used to break public key encryption schemes. Suppose that a
cybercriminal gets access to a powerful quantum computer, they can decrypt lost or
harvested confidential data by determining encryption keys.

In highly regulated industries, organizations must protect subject data rights to personally
identifiable information (PII) or personal health information (PHI) and comply with standards,
such as GDPR, NIST, ISO, SOX, CCPA, and PCI. Data privacy and security are critical to
avoid penalties and the cost of data breaches because digital trust and brand reputation are
at stake. Organizations need quantum-safe encryption to protect their sensitive data and
maintain the confidentiality of trade secrets in the quantum era.

3.1.1 Problem statement

An organization’s long-lasting data can be at risk from “harvest now, decrypt later” attacks.
These attacks are carried out offline or as passive attacks on confidentiality versus as an
online attack against a security protocol. That is, an adversary might carry out the attack by
collecting data or public information today and later attempt to recover the secret key that is
used to encrypt the data. This process might be done by mounting a brute force attack to find
the secret key. The the private key that is used in a key negotiation step also might be derived
by attacking Rivest, Shamir, Adleman (RSA) or Elliptic Curve Cryptography (ECC) if a public
key protocol was used for secret key establishment. The bad actor’s goal is to find the secret
key that was used to encrypt the data.

Organizations must start the use of quantum-safe methods to protect their data now so that
more vulnerable data is not produced. Several symmetric algorithms are not secure when
Grover’s algorithm is used to search the key space.

Organizations can mitigate the risk by switching to strong encryption algorithms, such as
AES, and ensuring the AES key length is at least 256 bits. As discussed in “Cryptographic
vulnerabilities possible with quantum computers” on page 9, organizations should not
continue to encrypt their sensitive data by using algorithms, such as 2TDEA or 3TDEA,
whose strength is not sufficient in the quantum computing era. These algorithms for new
encryption use cases must be retired or no longer used when possible.

3.1.2 Solving this challenge by using IBM z16 capabilities

Organizations must be concerned about data protection today. Even though the threat of a
quantum computer might be in the future, organizations must ensure that they are not
continuing to create encrypted data by using methods that are not quantum-safe, especially
for long-lasting data.
28 Transitioning to Quantum-Safe Cryptography on IBM Z

It is essential to understand data classification and where potential exposures exist. It is also
critically important to have a plan for retiring versions of your data that were protected by
using the retired algorithms. If that data remains in systems, an attacker might find it and
break it without attacking the version that is newly protected with the newer algorithm.

In 2.2.3, “Building your inventory” on page 23, we discussed creating a data inventory and a
cryptographic inventory. These security assets help organizations identify which data is
encrypted and which encryption methods were used.

The inventories must be reviewed to highlight weak or vulnerable encryption cryptography
that is used in the enterprise to protect data. IBM provides tools to help create the
cryptographic inventory, such as ADDI, CAT, zERT, and the Crypto Statistics Monitoring tool,
as described in “Establishing a cryptographic inventory” on page 58.

After the vulnerable data assets are identified, a data protection strategy is created. The
strategy is informed by using knowledge about how the data must be protected.

IBM z16 offers several features that can be used to protect the data, such as pervasive
encryption. This encryption feature uses AES encryption with 256 bits. Its internal key
management support uses quantum-safe protections with a hybrid key exchange mechanism
that uses CRYSTALS-Kyber and Elliptic Curve Diffie Hellman (ECDH) and dual-signing
scheme that uses CRYSTALS-Dilithium and Elliptic Curve Digital Signature Algorithm
(ECDSA). The pervasive encryption features include Linux on IBM Z protected key dm-crypt,
z/OS data set encryption, coupling facility encryption, and IBM z/VM encryption.

IBM z16 also provides quantum-safe APIs that can be used to protect data. The APIs are
available through ICSF. IBM z16 provides quantum-safe key management APIs and lifecycle
management support for the organization to generate the encryption keys and also
encryption APIs that can be used to encrypt the data (see Figure 3-1).

Figure 3-1 Data encryption process
Chapter 3. Using quantum-safe cryptography 29

The following process is used to encrypt data on the IBM z16 as shown in Figure 3-1 on
page 29:

1. The Requester calls ICSF to generate an AES 256-bit CIPHER key. The Requester is a
component that uses the quantum-safe APIs, such as an application or key management
tool.

2. ICSF sends a request to Crypto Express8S (CEX8S) to generate a secure key.

3. CEX8S returns the secure key to ICSF.

4. ICSF returns the key to the Requester.

5. The Requester calls ICSF to add a key record to the CKDS that contains the key, which
later is referenced by its associated key label.

6. The Requester calls ICSF to encrypt data by using the key label.

7. ICSF retrieves CIPHER key from the key data set. If requested, the secure key is
converted to a protected key. A secure key request, including the key and data, are sent to
the CEX8S. Protected key requests (including the key and data) are sent to CPACF.

8. The crypto engine (CPACF or CEX8S) returns the ciphertext to ICSF.

9. ICSF returns ciphertext to the Requester.

3.1.3 Industry applications

In highly regulated industries, organizations must provide data security and protection to
meet the privacy regulations and compliance requirements that are outlined in their data
retention policies. Examples are healthcare and insurance organizations with patient health
information (PHI) in electronic medical records (EMR) that must be protected. These and
other organizations must encrypt and store confidential documents for a long period.

Information that requires special attention includes tax documents, legal agreements, trade
secrets, and clinical trials. Customer data and PII must be protected. Financial and banking
organizations must protect customer data in mortgage and loan processing applications.
They must also safeguard banking (PAN data) or payment card (IBM PIN® data).
Organizations must ensure that their data is being protected by using quantum-safe
encryption methods.
30 Transitioning to Quantum-Safe Cryptography on IBM Z

3.2 Use case: Sharing keys securely

This use case describes the requirement for organizations with confidential information, such
as intellectual property, to share their sensitive data with Business Partners and third parties
by establishing keys with traditional key exchange protocols.

In addition, the threat that quantum computing has on these processes are explained in-depth
and how IBM z16 capabilities can overcome these challenges. The quantum-safe capabilities
in the IBM z16 can help ensure that partnering organizations securely share their intellectual
property and proprietary information to avoid information disclosure and protect it from
competitors to avoid reputation damage, profit loss, and brand impact.

Across many industries, organizations use their valuable information, sensitive data, and
intellectual property to compete and succeed in a global market. These digital assets
oftentimes constitute over 80% of the organization’s total value.

Organizations that have strategic relationships with each other, such as Business Partners,
often need to share this valuable information to collaborate and develop solutions and
products. As important as it is to enable this collaboration and allow for sharing of information,
it is equally important that this valuable information stays out of the hands of competitors and
adversaries. The unintended disclosure of an organization’s intellectual property and
sensitive information can result in irreversible damage to the organization’s reputation, along
with profit loss and long-lasting brand impact.

Traditionally, organizations keep their sensitive information and digital assets protected by
encrypting their data within their data boundaries. The ability to share these encrypted assets
with partners implicates a need to securely share keys with their partners so that they can
also access the data. This process is referred to as a key exchange and often used a key
agreement protocol. The details of a hybrid key agreement scheme are described in this
section.

3.2.1 Problem statement

In the past, this key exchange process was used by partnering organizations in a way that
allowed them to securely derive the same encryption key over a public, insecure channel.
Regardless of who was eavesdropping on the public channel (whether a competing
organization or a bad actor), the mutually derived encryption key maintained its confidentiality
because of the ability to establish a secure connection over this public, insecure channel by
way of key exchange schemes.

Traditionally, the ECDH key agreement protocol is a method that is used to derive keys for a
key exchange process. This key agreement scheme allows two business parties, each with
their own ECC key pair (consisting of a private and public key) to establish a shared secret by
using an insecure channel, and it begins with each party sharing their public keys.

However, a key agreement scheme solves one piece of the key exchange puzzle. To create a
truly secure key exchange protocol, you must also solve the “trust” problem that is associated
with exchanging keys.

Although the public key can be shared over an insecure channel, a mechanism must be in
place to ensure that the key that is labeled as party A’s public key really belongs to party A
and the key labeled party B’s public key really belongs to party B to avoid a man-in-the-middle
attack.
Chapter 3. Using quantum-safe cryptography 31

This problem can be addressed by cryptography; however, this use case focuses on the key
establishment piece of the key exchange puzzle. For our example, we assume that a trust
mechanism is in place.

If party A and party B wanted to participate in a key exchange process to obtain a shared key,
they each generate their ECC public-private key pair and share their public keys with each
other. Each party can use the ECDH protocol to derive the same shared key.

For example, party A uses their private key in combination with party B’s public key in the
protocol, while party B uses their private key in combination with party A’s public key. The
result is that both parties now have the same shared secret. This method of key exchange to
derive the same shared secret historically was considered secure because neither party had
to share their private key to perform the key exchange.

Traditionally, this use of public key cryptography for key exchange was considered sufficiently
secure. The only means for a cybercriminal to derive the shared secret key was to obtain one
of the party’s private keys.

Although the public and private keys in an ECC key pair are mathematically related, it takes a
conventional computer millions of years to derive the private key from one party’s public key
because of the significant computational capacity that is required to perform this operation.
However, the rise of quantum computing brings about many challenges to keeping the shared
secret key secure.

Although specific symmetric key algorithms, such as AES with 256-bit encryption keys, are
considered quantum-safe, the method of sharing those keys in a key exchange by way of
public key cryptography is no longer considered to be quantum-safe, which results in the
vulnerability of these symmetric keys.

After quantum computers have the computing power to perform Shor’s Algorithm, an
adversary with access to a quantum computer can solve the elliptic curve discrete logarithm
problem exponentially faster than a conventional computer. As a result, the private key of one
party can be derived from their public key in only a matter of hours.

After the key is in the hands of an adversary, the same shared key that is derived by the two
parties might be generated with the ECDH key exchange scheme. Then, the bad actor can
access the organization’s valuable information.

To make matters worse, data that is encrypted today by using symmetric keys that are
exchanged between two parties by way of public key cryptography is still not safe, even in the
absence of quantum computers of sufficient scale.

Because the encrypted data, along with the public key, can be harvested today, an adversary
with access to a quantum computer in the future can perform Shor’s algorithm to break this
public key cryptographic algorithm to expose the sensitive data.

3.2.2 Solving this challenge with IBM z16 capabilities

Valuable information and digital assets that partnering organizations share with each other
are no longer secure because of methods that are used by adversaries to harvest the
encrypted data now.

IBM z16 provides quantum-safe capabilities to circumvent this security challenge and allow
for the secure key exchange between two parties in a quantum-safe manner. With IBM z16,
organizations have a reliable method to securely share encryption keys between parties
through a hybrid key exchange scheme.
32 Transitioning to Quantum-Safe Cryptography on IBM Z

Although traditional key exchange schemes relied on public key cryptography alone to derive
a shared secret, a hybrid key exchange scheme relies on classical cryptography (such as
ECDH) and a quantum-safe cryptographic algorithm (such as CRYSTALS-Kyber). ECDH is a
key agreement protocol and CRYSTALS-Kyber is a key encapsulation mechanism.

When used together, organizations have an efficient way to securely exchange keys, even in
the face of high-powered quantum computers. This secure exchange is made possible with
the introduction of quantum-safe APIs within the Crypto Express8S feature (CEX8S). This
feature is provided with IBM z16 to securely derive quantum-safe encryption keys by using
the hybrid key exchange mechanism that is performed in the CEX8S by using the CCA API or
the Enterprise PKCS#11 API.

When two Business Partners (party A and party B) take advantage of this hybrid key
exchange scheme on IBM z16, they can safely derive keys that are used to protect their
shared sensitive information (see Figure 3-2).

Figure 3-2 Key and data setup for hybrid key exchange - CCA example

By using this capability, party A generates an ECC key pair and a quantum-safe
CRYSTALS-Kyber key pair. Party B must generate an ECC key pair and an AES CIPHER key.
The two parties then exchange their public keys.
Chapter 3. Using quantum-safe cryptography 33

Party B then uses CEX8S APIs to generate a random 32-byte secret and encrypt it with party
A’s CRYSTAL-Kyber public key and an AES key that is owned by Party B. The secret that is
protected with the CRYSTAL-Kyber public key is transmitted to party A. Although it is being
sent over an insecure channel, not even a quantum computer can break this algorithm
because it is considered to be quantum-safe (see “New algorithms to counter CRQC attacks”
on page 11).

After party A receives the wrapped secret, they then use their CRYSTALS-Kyber private key
to recover the 32-byte secret from party B. Now that both parties have each other’s ECC
public key and the 32-byte secret, they can each use the ECDH key agreement protocol to
create a shared secret just as they do in the classical key exchange process (see
“Quantum-safe hybrid key exchange” on page 113).

However, this shared secret is used with the mutually known 32-byte secret in the key
material creation process to compute the same shared key by using ECDH. This 32-byte
secret is protected with the quantum-safe Kyber algorithm. By using the CEX8S APIs, the
secret information is protected by the hardware security module and never appears outside in
the clear in the memory of the host computer.

After this shared secret key is derived by both parties, it can be used to encrypt either party’s
data, and the data itself can be shared between parties (see Figure 3-3). Even in the
presence of a quantum computer with sufficient computing power, the key cannot be derived.
Although a quantum computer might derive either party’s ECC private key, the 32-byte secret
that is used in the ECDH protocol cannot be exposed because it was protected by using a
CRYSTALS-Kyber key.

Figure 3-3 Hybrid key agreement process - CCA example
34 Transitioning to Quantum-Safe Cryptography on IBM Z

3.2.3 Industry applications

This section describes how organizations across many different industries with a need to
share encryption keys securely with partners by using traditional key exchange mechanisms
might be vulnerable to CRQC attacks.

It also outlines how they can benefit from the hybrid key exchange schemes that are provided
with IBM z16 to ensure data confidentiality, even in the presence of sufficiently capable
quantum computers.

Pharmaceuticals
The pharmaceutical industry is an example of the need to securely share intellectual property
and research findings with Business Partners to drive success. The process of developing
new drugs and making them publicly available in the marketplace is lengthy and costly.

On average, it takes at least 10 years for a new drug to become available in the market, with
six to seven of those years being dedicated to performing clinical trials. A study that was
conducted by Tufts Center for the Study of Drug Development1 estimated that it costs
pharmaceutical companies $2.6 billion to develop a new medication gaining marketing
approval.

Pharmaceutical companies that are vying to successfully complete clinical trials for their new
drug have only a 12% success rate. Even if a newly developed drug passes all required steps
to bring it to market, pharmaceutical companies face heavy competition with each other.

To create efficiencies in the drug development process to lower costs and increase the
likelihood that a drug passes clinical trials, pharmaceutical companies can benefit greatly
from collaborating with each other and other technology organizations. An example of this
collaboration within the pharmaceutical industry was the agreement between Pfizer and
BioNTech to begin developing a vaccine for COVID-19. One year later, the BioNTech, Pfizer
vaccine was approved for use worldwide.

Part of this collaboration requires the need to safely share intellectual property and research
findings with each other. Their data must be protected from unintended disclosure by
competitors and adversaries to avoid reputation damage, profit loss, and brand impact.

Although the rise of quantum computing undoubtedly benefits pharmaceutical companies
regarding drug development, it also brings about challenges for them about collaborating with
each other and sharing their intellectual property in a secure manner.

If an adversary with access to a quantum computer can break the encryption algorithms that
are used to protect shared information, they can publicly expose a pharmaceutical company’s
research findings that can result in a significant advantage for their competitors to release a
similar drug.

By taking advantage of the quantum-safe capabilities with IBM z16, these organizations can
use the benefits that quantum computers can provide in Research and Development while
also ensuring that intellectual property that is shared between companies remains secure.

1 See: Protecting Intellectual Property Rights in the Pharmaceutical Industry
Chapter 3. Using quantum-safe cryptography 35

https://studentorgs.kentlaw.iit.edu/ckjip/protecting-intellectual-property-rights-in-the-pharmaceutical-industry/#:~:text=Intellectual%20property%20rights%2C%20especially%20patent,a%20result%2C%20exclusivity)%20enable

Government bodies
Government bodies often partner with other government agencies and the private sector to
create efficiencies in their operations. For example, information sharing programs are used
that are dedicated to saving government resources through partnerships between various
federal, state, and municipal government agencies. As part of these information sharing
programs, the previously mentioned agencies are entitled to exchange taxpayer information
with each other.

This example the need to facilitate the sharing of confidential information between partnering
agencies. Although safeguards exist to protect the confidentiality of taxpayers’ information,
the threat of quantum computing presents challenges for maintaining this confidentiality in the
future.

Government bodies greatly benefit from the capabilities that are provided with IBM z16 to
enable secure information sharing with partners. By using quantum-safe hybrid key exchange
schemes, government agencies can maintain the confidentiality of their citizens’ information
as it is shared to ensure that not even a quantum computer can intercept the information and
break the encryption algorithms that are used to protect it.

Banking
In financial services, such as banking, a significant need exists to protect business-critical
data in the face of quantum computing. Although many examples exist of data that requires
protection in banking, a simple example to illustrate is in the case of credit card information.

Banks are required to comply with the Payment Card Industry Data Security Standard (PCI
DSS) for protection of customer’s sensitive payment card information. As a result, security
protocols are in place to protect their sensitive data as it is transmitted between point-of-sale
(POS) terminals and the bank. This process typically is done by encrypting the data that is in
transit between the two parties.

PCI DSS implies is that both parties must have a shared symmetric key that is used to
encrypt the customer data at the POS and then decrypt it when in the hands of the bank.
Even when quantum-safe symmetric key algorithms are used, such as AES (assuming
256-bit keys) for this encryption and decryption, the problem is that the shared keys are
typically exchanged through classical public key cryptography schemes alone that are not
quantum-safe. For example, they might use ECDH as their key agreement protocol to derive
their symmetric encryption key.

As a result, the protection of their customers’ sensitive payment card information can
potentially be exposed if a cybercriminal harvests the encrypted data now to decrypt in the
future after they obtain access to a quantum computer of sufficient scale.

Therefore, banks and other organizations that deal with sensitive payment card information
can benefit greatly by using the hybrid key exchange schemes that are available with IBM
z16. By doing so, they securely derive a shared encryption key that cannot be derived in the
face of high-powered quantum computers.

Automotive and aerospace
Similar to the pharmaceutical industry, automotive and aerospace companies must protect
their intellectual property from unintended information disclosure from their competitors to
avoid reputation damage, profit loss, and brand impact. They also must collaborate with
Business Partners to develop the latest cutting-edge capabilities in their respective industries.
36 Transitioning to Quantum-Safe Cryptography on IBM Z

To enable this collaboration, they must share their intellectual property and proprietary
research findings with each other in a way that is secure and cannot be exposed to bad actors
and competitors. This sharing also is done by way of encrypting confidential data in transit by
using mutually derived encryption keys.

Because these keys are shared between partnering organizations by using traditional public
key cryptography alone, it can be concluded that quantum computers eventually can expose
the organizations’ confidential information that is shared between parties by breaking the
traditional public key algorithms that are used today.

Therefore, the quantum-safe key exchange mechanisms that are available with IBM z16 can
be used. As a result, automotive and aerospace companies can be assured that the
intellectual property they are exchanging with partners is never exposed in the clear to avoid
unintended information disclosure.

3.3 Use case: Message integrity and secure logging

This use case addresses the problem of ensuring the integrity of messages and logs in the
presence of quantum computers and how capabilities that are provided with IBM z16 can
solve these challenges.

Organizations that send messages and digital assets to other parties, such as legal
documents, audit logs, financial statements, and historical records, traditionally ensured the
integrity of their messages by using digital signatures.

By using digital signatures, organizations can ensure that the receiver of a message or
document knows whether the message is genuine and untampered. This feature makes it
possible to prevent legal and documentation fraud.

However, with the rise of quantum computing, adversaries with access to a quantum
computer of sufficient scale can undetectably rewrite history and modify documents,
messages, and logs, and claim that the tampered message was indeed the original message
the organization sent.

This section addresses how IBM z16 capabilities can overcome this security challenge.

Although digital signatures can serve multiple purposes, the focus of this use case is on
message integrity. Digital signatures can also help achieve identity authentication, or proof of
authorship, as described in 3.4, “Proof of authorship” on page 42.

3.3.1 Problem statement

In the past, organizations relied on digital signatures to ensure the integrity of messages,
digital documents, and logs used for auditing purposes. Traditionally, when an organization
sent a digitally signed message or document to another party, the other party verified the
digital signature to ensure that the document or message was genuine and was not modified
by an adversary. By using digital signatures, organizations avoided advanced legal and
documentation fraud.

Digital signatures rely on public key cryptography. ECDSA is one example of a popular
cryptographic algorithm that is used for digital signatures.
Chapter 3. Using quantum-safe cryptography 37

For an organization to send a message or document to another party and ensure it was not
tampered with in-transit, they digitally sign the document by using ECDSA, for example. The
process begins with the organization generating an ECC key pair (consisting of a private and
public key). They then use the ECDSA signing algorithm to generate a digital signature.

As part of the algorithm’s signing process, a cryptographic hash of the message, document,
or log is first calculated by using a hash algorithm, such as SHA-256. Because the hash
generation is a one-way function, meaning the hash value is unique to the exact contents of
the message or document, any effort to modify the message or document results in a
different, inconsistent hash value.

Following the hash value generation, it is signed by using the organization’s private key, to
which only they have access. The signed hash is then appended to the document or message
and is sent to the party it was intended for, along with the organization’s public key.

The retrieving party can verify the integrity of the message or document by using ECDSA and
the public key that was shared:

1. The party generates their own hash of the document or message by using the same hash
function that was used to sign it.

2. They then use the shared public key to verify the signed hash that was appended to the
document or message.

3. As part of the ECDSA verification process, the newly computed hash value is compared
with the decrypted hash value that was appended to the document.

If the two hashes match, the party can be assured that the message was not tampered
with in-transit and the contents of the message or document are exactly what the original
organization sent.

If the hashes do not match, the receiving party can conclude that the message was
tampered with because the hash that they generated differs only from the appended hash
if the message’s contents was changed in-transit.

When digital signatures are used, the receiving party can reliably determine the integrity of
the message because they assume that only the original organization includes the
mathematically related private key that was used to sign the hash and nobody else. This
assumption can be made because of the mathematical complexity of the elliptic-curve
discrete logarithm problem.

The only way for an adversary to obtain the original organization’s private key is to derive it
from the associated public key by solving this mathematical problem. However, it is not
feasible for a conventional computer to solve this problem because it likely takes millions of
years. As a result, it traditionally was accepted that the appended signed hash is the hash
value that was generated from the original message or document. Therefore, the integrity can
be determined by comparing the receiver’s hash output with the appended hash value.

With the rise of quantum computing, eventually it will be possible for a quantum computer of
sufficient scale to solve this once considered complex problem in only a matter of hours by
using Shor’s algorithm.

An adversary with access to a quantum computer might take an entity’s public key and derive
the associated private key. After it is in the hands of an adversary, they can alter the contents
of the message or document undetectably.
38 Transitioning to Quantum-Safe Cryptography on IBM Z

When the organization sends the message to the intended party, the adversary can run a
“man in the middle” attack to intercept the original message, modify its contents, re-create a
new hash value, and then, sign this new hash by using the organization’s private key. This
newly signed message is then forwarded to the intended party. The party has no way of
ensuring its integrity because the hash value that was generated is identical to the newly
appended hash value.

This ability to undetectably modify messages, documents, and logs by using quantum
computers can result in disastrous consequences, especially when considering the various
regulations, such as eIDAS (in the EU), and UETA and E-SIGN (in the US) that allows digital
signatures to have equal legal status to traditional “wet” signatures. In addition, adversaries
might tamper with potentially life-saving messages that are used in the automobile industry
and messages that are used for international government communication.

3.3.2 Solving the integrity challenge with IBM z16 capabilities

The challenge of ensuring message, document, and log integrity in the face of quantum
computing can be alleviated by using the dual digital signature schemes that are made
possible with IBM z16. For more information about for the procedures that are used to enable
these dual digital signature schemes, see “Quantum-safe digital signatures” on page 107.

By using this IBM z16 capability, organizations can ensure message integrity by digitally
signing their messages and documents by using a classical cryptographic algorithm and a
quantum-safe cryptographic algorithm.

For example, a dual digital signature can be generated by using a classical cryptographic
algorithm, such as ECDSA, with a quantum-safe cryptographic algorithm, such as
CRYSTALS-Dilithium. IBM z16 enables this through enhancements in the Crypto Express8S
(CEX8S) features to provide quantum-safe algorithm APIs.

As in the past, it is important to continue the use of a classical cryptographic signature
algorithm, such as ECDSA, to comply with the various standards and compliance
requirements mandating the use of approved signing algorithms. However, with the use of a
classical cryptographic algorithm for digital signatures, it is also crucial to begin safeguarding
information with a quantum-safe cryptographic scheme to ensure that message integrity is
maintained in the face of CRQC attacks.

To ensure that message integrity is maintained in the future, an organization can use IBM z16
to digitally sign their out-bound messages and documents by using two digital signatures.
This process is explained next (for more information, see “Quantum-safe digital signatures”
on page 107).

An organization that wants to ensure the integrity of its messages begins by generating a
hash of its message by using a cryptographic hash algorithm, such as SHA-256.

Then, the organization generates two key pairs. For example, they might generate an ECC
public key pair and a quantum-safe CRYSTALS-Dilithium key pair (ICSF supports the
CRYSTALS-Dilithium signature algorithm on the CCA and PKCS#11 APIs for IBM z16).

The organization then signs this hash with ECDSA by using their ECC private key, which
results in an ECC signature. With generating that ECC signature, the organization also signs
the same hash by using their CRYSTALS-Dilithium private key to generate a quantum-safe
signature. The result is that two signatures exist for the single hash of the message, and both
signatures are appended to the message for verification purposes.
Chapter 3. Using quantum-safe cryptography 39

Anyone who wants to verify that the message was not modified or tampered with in-transit
uses the CRYSTALS-Dilithium public key to verify the Dilithium signature and the ECC public
key to verify the ECC signature. As part of the verification process, the receiving party
generates the hash value of the message and passes the hash value and the suitable digital
signature to the signature verification function for each signature algorithm. If the ECC
signature verifies and the CRYSTALS-Dilithium signature verifies, the party can be assured
that the message was not tampered with by a bad actor, and thus, message integrity is
maintained.

As shown in Figure 3-4, success indicates message integrity and authorship by the owner of
the public key.

Figure 3-4 Validating the authenticity (proof of authorship) and integrity of a message

This dual digital signature scheme that is enabled with IBM z16 solves the challenge of
ensuring message integrity, even if an adversary can access a quantum computer that can
run Shor’s algorithm.

Suppose that the adversary ran a man-in-the-middle attack to intercept the original message,
modify its contents and then, re-create a new hash value. Although they can sign the new
hash by using the organization’s ECC private key that they derived by using Shor’s algorithm,
they have no way of signing the same hash by using the organization’s CRYSTALS-Dilithium
private key because it is quantum-safe.

A single ECC signature is of no value because the integrity verification works only if a valid
ECC signature and a valid Dilithium signature with the message are available.
40 Transitioning to Quantum-Safe Cryptography on IBM Z

3.3.3 Industry applications

This section describes the wide range of applications that quantum-safe digital signatures
have across different industries. Also discussed is how financial services organizations,
automotive companies, software vendors, and even law firms might all benefit from the dual
digital signature schemes that are enabled with IBM z16 to ensure that their communications
and data were not tampered with or targeted by adversaries with access to quantum
computers.

Banking
In the banking industry, digital signatures prove to be a vital necessity in securing financial
transactions and messages between banks. Society for Worldwide Interbank Financial
Telecommunication (SWIFT) was created in the 1970s to enable banks across the world to
share information about financial transactions with each other. These high-value electronic
transactions and messages can be shared between banks over the SWIFT network, which
relies on public key infrastructure to digitally sign and encrypt messages.

The growing presence of quantum computing throughout the world threatens the long-term
security of these types of banking transactions. Relying on traditional public key cryptography
alone for securing these interbank transactions poses a vulnerability in message integrity
because adversaries with access to quantum computers can inevitably forge transactions and
messages.

The banking industry might also be one of the first targets of CRQC attacks because of the
profit potential for cybercriminals. Adopting quantum-safe dual digital schemes in the banking
industry is a must to secure interbank financial transactions in the future.

Automotive industry
In the automotive industry, manufacturers are constantly innovating new ways of improving
driver safety. One of these innovations is the rise of vehicle-to-vehicle (V2V) communication
that aims to make driving safer by allowing vehicles to communicate with each other to
prevent crashes, traffic, and so on.

Quantum computing poses security challenges for this V2V communication in which
messages between vehicles might be tampered with by bad actors. Messages that are
transmitted between vehicles that are digitally signed by using traditional public key
cryptography alone, such as RSA or ECDSA, no longer guarantee the integrity of these V2V
messages when quantum computers of sufficient scale are available to bad actors.

Adversaries might manipulate messages to create life-threatening situations on highways and
in busy cities. By taking advantage of the dual digital signing schemes that are available with
IBM z16, vehicle manufacturers can use quantum-safe digital signing to thwart message
tampering attacks and make driving safer.

Software vendors
In software development, vendors aim to secure software distribution by using digital
signatures that are based on public key cryptography.

For example, updates to a software release are often digitally signed by using RSA or ECDSA
encryption algorithms to ensure that customers can verify whether the software was
tampered with before installation. Oftentimes, these software updates require automatic
digital signature verification before installing the update.
Chapter 3. Using quantum-safe cryptography 41

The traditional algorithms that are used today for digitally signing software were reliable in
ensuring its integrity; however, with the rise of quantum computing, integrity is no longer
guaranteed because bad actors can tamper with the software undetectably.

This tampering can result in a customer installing malware on their systems. Therefore, it is
critical that software vendors implement quantum-safe dual digital signature schemes in their
products.

Legal industry
In the legal industry, regulations, such as eIDAS (in the EU) and UETA and E-SIGN (in the
US) allow digital signatures to have equal legal status to traditional “wet” signatures.

Historically, confidential legal documents that use digital signature capabilities were not
forged because the integrity of these documents was ensured through verification of the
digital signatures by the receiving party.

However, quantum computers that can quickly derive the private keys serving as the
underpinnings of these digital signatures eventually will make it possible to manipulate and
tamper with legal documents by forging digital signatures.

To avoid advanced legal fraud and impersonation attacks in this era where digital signatures
serve as legal evidence, it is critical that law firms begin safeguarding their legal documents
and communications with quantum-safe dual digital signature schemes that are available with
IBM z16.

3.4 Proof of authorship

Organizations that made their valuable assets digitally accessible, such as legal documents,
financial statements, historical records, and license code, often ensured nonrepudiation such
that the public can trace back these digital assets to the original creator.

Proof of authorship was achieved by using digital signatures where anyone can verify the
authenticity of a digitally signed document or digital asset. Digital signatures also make it
impossible for any unknown entity to disseminate information or assets to the public and claim
it came from someone else, which ensures responsibility for the distribution of digital
information.

In the legal industry, various regulations are in place that allow digital signatures to have
equal legal status to traditional “wet” signatures. Because legal documents might feature long
lifetimes, the signatures on them might need to be secure for decades.

With the rise of quantum computing, adversaries with access to a quantum computer of
sufficient scale can manipulate legal history by forging digital signatures. As a result, the legal
underpinnings of digitalization are now vulnerable.

This use case illustrates how organizations can avoid advanced legal fraud and
impersonation attacks by using the quantum-safe capabilities that are available on IBM z16.
42 Transitioning to Quantum-Safe Cryptography on IBM Z

3.4.1 Problem statement

Organizations traditionally made their digital assets public while ensuring proof of authorship
and nonrepudiation. Anyone accessing or viewing these digital assets can verify exactly from
who it came, which is made possible by using digital signatures.

Nonrepudiation and proof of authorship are ensured because these digital signatures are
generated by using a private key that is only known by the signer. As a result, the signer has
no means of repudiating their signature that is added to the document.

If a dispute occurs, proof of authorship enables the document’s authorship to be supported by
evidence, being the holder of the private key.

Digital signatures
Digital signatures are made possible with the use of public key cryptography. One example of
a popular cryptographic algorithm for digital signatures is ECDSA. Organizations that wanted
to digitally sign a document so that the public can trust that it came from them begins by
generating an ECC key pair that consists of a private and public key.

They then use the ECDSA signing algorithm to digitally sign their document. The algorithm
works by first calculating a cryptographic hash of the document by using a cryptographic hash
algorithm, such as SHA-256. This hash is unique to the exact contents of the document.

If the document was modified, the resulting hash output is different. As part of the signing
algorithm, the hash value then is signed by using the signer’s private key, which only they can
access. The signed hash is appended to the document and made publicly available along
with the signer’s public key.

Now that the document is digitally signed, anyone who wants to access the document can
verify its authenticity by using ECDSA and the public key. The receiver uses the public key
that they received to verify the signed hash that is appended to the document.

They also generate a hash output of the same document by using the same hash function
that was used to sign the document. The algorithm then compares the hash value that the
receiver computed with the decrypted hash value that was appended to the document. If the
two hashes match, the public key sender is verified as the true author of the document
because it is assumed that only they have the mathematically related private key.

Elliptic-curve discrete logarithm problem
The strength of these digital signatures for proving authorship of a digital asset is a result of
the mathematical complexity of the elliptic-curve discrete logarithm problem. The only way to
derive the private key from the associated public key is to solve this mathematical problem,
which is not feasible for conventional computers because it likely takes millions of years to
solve the elliptic-curve discrete logarithm problem.

Therefore, it was always assumed that the private key holder is the author of the digitally
signed document, which is how proof of authorship can be ensured. As a result, public key
cryptography alone was considered secure for digital signatures.

With the rise of quantum computing, it eventually will be possible for a quantum computer of
sufficient scale to solve this once considered complex problem in only a matter of hours by
using Shor’s algorithm. An adversary with access to a quantum computer might take an
entity’s public key and derive the associated private key, which can have disastrous
consequences.
Chapter 3. Using quantum-safe cryptography 43

By using that entity’s private key, the adversary can forge their digital signature to manipulate
legal history and claim that the digital assets they create were authored by the entity whose
private key they possess.

Making matters worse, many legal documents (and the signatures on them) are in public
records; therefore, an adversary can easily obtain them and attack the cryptography with a
quantum computer. No “hacking” is necessary to get to the data to be attacked. Documents,
messages, certificates, software, and transactions all can be forged. Therefore, an identity
over the internet is no longer guaranteed.

3.4.2 Solving this challenge with IBM z16 capabilities

Capabilities that are provided by IBM z16 allow organizations to solve this challenge that is
faced today with the threat of quantum computing by using dual digital signature schemes
and quantum-safe key generation. For more information about enabling these dual digital
signature schemes, see “Quantum-safe digital signatures” on page 107.

With IBM z16, it is possible for organizations to digitally sign their valuable assets by using a
classical cryptographic algorithm and a quantum-safe cryptographic algorithm. The ability to
use a quantum-safe cryptographic algorithm, such as CRYSTALS-Dilithium, with a classical
cryptographic algorithm, such as ECDSA, is supported by the quantum-safe algorithm APIs
within the new Crypto Express cards (CEX8S) that was provided with IBM z16.

The value in the use of this dual digital signature scheme is two-fold: First, as in the past, it is
important to use a classical cryptographic signature algorithm, such as ECDSA, because
various standards and compliance requirements exist that require standards-approved
signing algorithms.

Uncertainty also exists about how those standards might change in the future with the rise of
quantum computing. Although newly developed algorithms might be considered
“quantum-safe,” it is never guaranteed that these algorithms are not to be found insecure.

Therefore, as a minimum security measure, it is beneficial to continue the use of these
classical signature schemes to thwart attacks from conventional computers. Also, to begin
safeguarding valuable information in the future, even in the face of high-powered quantum
computers, it is important to buttress this protection with a known quantum-safe cryptographic
signature scheme with IBM z16.

To maintain proof of authorship and nonrepudiation for an organization’s digital assets, they
use IBM z16 to create two digital signatures that public entities can verify (see Figure 3-4 on
page 40):

1. A hash of their document is generated by using a cryptographic hash algorithm, such as
SHA-256.

2. The organization generates two key pairs. For example, they might generate an ECC
public key pair and a CRYSTALS-Dilithium key pair (ICSF supports the
CRYSTALS-Dilithium signature algorithm on the CCA and PKCS#11 APIs for IBM z16).

3. The organization signs this hash with ECDSA; for example, by using their ECC private
key, which results in an ECC signature. Along with generating that ECC signature, the
organization also signs the same hash by using their CRYSTALS-Dilithium private key to
generate a quantum-safe signature.

This process results in having two signatures for the single hash of the message, and both
signatures are appended to the digital document for verification.
44 Transitioning to Quantum-Safe Cryptography on IBM Z

Anyone who wants to verify that this organization authored the document uses the
CRYSTALS-Dilithium public key to verify the Dilithium signature and the ECC public key to
verify the ECC signature. If both signatures are successfully verified, the verifying party can
be assured that the document was authored by the organization.

The threat that is created by quantum computers of sufficient scale to forge digital signatures
is negated because both signatures must verify.

Even if an adversary with access to a quantum computer can run Shor’s algorithm to derive
the ECC private key by using the related public key, they cannot forge the organization’s
signature because they cannot derive their CRYSTALS-Dilithium private key.

Suppose a cybercriminal with access to a quantum computer can create a fake document
and sign it with the derived ECC private key. The ECC signature is created, but the adversary
does not have the CRYSTALS-Dilithium private key to create a Dilithium signature.

A single ECC signature is of no value because the verification works only if a valid ECC
signature and Dilithium signature exists with the document.

For more information, see “Quantum-safe digital signatures” on page 107.
Chapter 3. Using quantum-safe cryptography 45

46 Transitioning to Quantum-Safe Cryptography on IBM Z

Chapter 4. Getting ready for quantum-safe
cryptography

In this chapter, we introduce the cryptographic components that are available on the IBM Z
platform.

We also describe an approach to help discover and classify data, establish a cryptographic
inventory by using various tools, and adopt quantum-safe cryptography on IBM Z.

Discussions about best practices, mitigation options, and encryption key management tools
are also included.

This chapter includes the following topics:

� 4.1, “IBM Z cryptographic components overview” on page 48
� 4.2, “Steps towards quantum protection” on page 56
� 4.3, “Best practices, mitigation options, and tools” on page 65

4

© Copyright IBM Corp. 2022. 47

4.1 IBM Z cryptographic components overview

The cryptographic stack on the IBM Z platform consists of many different hardware and
software components that provide unique capabilities to aid in securing your environment. In
this section, the components that are available for quantum-safe cryptography are briefly
described. We also review the required levels of hardware and software components to
implement quantum-safe cryptography in your IBM Z environment.

4.1.1 IBM Z cryptographic hardware components

On the hardware side, quantum-safe cryptography is supported by the Crypto Express
hardware security module (HSM) and the Central Processor Assist for Cryptographic
Functions (CPACF).

Cryptographic functions can be categorized in the following groups from an application
program perspective:

� Symmetric cryptographic functions and hashing functions are provided by CPACF or
Crypto Express features

� Asymmetric cryptographic functions and digital signatures are provided by Crypto Express
features, while some are also provided by CPACF

For more information about the different types of cryptography, see 1.2.1, “Cryptography
overview” on page 5.

CPACF
Each processor unit (PU) chip in the IBM Z platform has an independent cryptographic
engine (known as a cryptographic assist). CPACF is a high performance, low-latency
coprocessor that performs symmetric key encryption operations and calculates message
digests (hashes) in hardware.

The following algorithms are supported:

� Advanced Encryption Standard (AES) for 128-bit, 192-bit, and 256-bit keys

� Data Encryption Standard (DES) and Triple Data Encryption Standard (TDES)

� Hashing algorithms:

– Secure Hash Algorithm (SHA)-1
– SHA-2
– SHA-3
– SHAKE

CPACF supports Elliptic Curve Cryptography (ECC) clear key, which improves the
performance of Elliptic Curve (EC) algorithms. The following algorithms are also supported:

� EdDSA (Ed448 and Ed25519)
� ECDSA (P-256, P-384, and P-521)
� ECDH (P-256, P-384, P521, X25519, and X448)
� Support for protected key1 signature creation

z/OS Integrated Cryptographic Services Facility (ICSF) uses CPACF to accelerate
cryptographic functions. For ICSF to use these functions, Feature Code (FC) 3863 must be
enabled. This FC is not enabled by default.

1 A protected key is a data-encrypting key that is encrypted by a CPACF wrapping key and used within the IBM Z
platform.
48 Transitioning to Quantum-Safe Cryptography on IBM Z

IBM z16 includes counters for CPACF to track cryptographic algorithms, bit lengths, and key
security. The CPACF counters provide evidence for compliance (which cryptography is used),
performance (frequency of cryptography use), and configuration (proof of change).

For more information, see “IBM ICSF cryptographic usage tracking” on page 59, and
“Formatting cryptographic usage statistics records” on page 75.

Crypto Express
Each Crypto Express HSM contains cryptographic engines that can be configured as a
Common Cryptographic Architecture (CCA) cryptographic coprocessor (CEXnC)2, as an
Enterprise Public Key Cryptography Standard #11 (PKCS #11) cryptographic coprocessor
(CEXnP), or as an accelerator (CEXnA) for public key and private key cryptographic
operations that are used with SSL/TLS processing.

Crypto Express coprocessors enable secure key generation and operations under the
direction of ICSF. It is recommended that at least two of each type (CCA coprocessor or
Enterprise PKCS#11 coprocessor or accelerator) be configured for redundancy.

If one coprocessor must be taken offline, the second coprocessor that is loaded with same
master keys3 can handle new requests.

On IBM z15 and IBM z16, up to 60 Crypto Express coprocessors can be configured, each
supporting up to 85 cryptographic domains4. Each domain is protected by a master key,
which prevents access across domains and effectively separates the contained keys.

Quantum-safe algorithms are supported by the Crypto Express7S and Crypto Express8S
coprocessors. For more information about the supported algorithms for each coprocessor
type, see 4.1.3, “Minimum hardware and software for quantum-safe cryptography support” on
page 55.

Secure boot technology
In addition to the quantum-safe cryptography support in the CPACF and Crypto Express
features, IBM z16 secure boot technology uses quantum-safe and classical digital signatures
to perform a hardware-protected verification of the Initial Machine Load (IML) firmware
components. This firmware integrity protection is anchored in a hardware-based Root of Trust
(RoT) to ensure that the system starts securely by keeping unauthorized firmware (or
malware) from taking over during start.

Trusted Key Entry
As an option, a Trusted Key Entry (TKE) Workstation can be used to securely manage and
load cryptographic keys. Keys can be loaded remotely for multiple Crypto Express HSMs. A
TKE is required for Crypto Express coprocessors in Enterprise PKCS#11 (EP11) mode. The
TKE feature contains a combination of hardware, firmware, and software. An optional smart
card reader can be added to the TKE Workstation.

With z16 and TKE 10.0, quantum-safe encryption algorithms are now used for key exchange
For more information, see “Trusted Key Entry” on page 69.

2 n is a 7 or 8, which represents a Crypto Express7S feature or Crypto Express8S feature, respectively.
3 A master key is a special key-encrypting key (KEK) that is in a tamper-responding, Crypto Express adapter. A

master key sits at the top level of a KEK hierarchy.
4 A domain acts as an independent cryptographic device with its own master key. Domains in the same Crypto

Express are isolated. Domains are assigned to IBM Z logical partitions (LPARs).
Chapter 4. Getting ready for quantum-safe cryptography 49

Figure 4-1 shows the hardware components for implementing quantum-safe cryptography in
an IBM Z environment.

Figure 4-1 IBM Z cryptographic hardware components

For more information about the cryptographic hardware components, see IBM z16 (3931)
Technical Guide, SG24-8951.

Crypto Express features
Crypto Express8S and Crypto Express7S features provide quantum-safe RoT and
quantum-safe cryptographic APIs for application program use (see Table 4-1).

Table 4-1 Crypto Express features for quantum-safe cryptography

Crypto Express8S
When the Crypto Express8S adapters are configured in CCA or EP11 mode, the following
support for quantum-safe symmetric algorithms (AES, CMAC, and HMAC), hashing
algorithms (SHA-2, SHA-3), and digital signature algorithms are enabled by using:

� CRYSTALS-Dilithium 6,5 (Round 2)
� CRYSTALS-Dilithium 8,7 (Round 2)

Feature Description

Crypto Express8S
Dual-HSM
(FC 0908)

This feature contains two IBM 4770 PCIe cryptographic coprocessors, which
can be independently defined as a coprocessor or an accelerator. Supported on
IBM z16.

Crypto Express8S
Single-HSM
(FC 0909)

This feature contains one IBM 4770 PCIe cryptographic coprocessor, which can
be defined as a coprocessor an accelerator. Supported on IBM z16.

Crypto Express7S
Dual-HSM
(FC 0898)

This feature contains two IBM 4769 PCIe cryptographic coprocessors, which
can be independently defined as a coprocessor or an accelerator. Supported on
IBM z15 and IBM z16.

Crypto Express7S
Single-HSM
FC 0899)

This feature contains one IBM 4769 PCIe cryptographic coprocessor, which can
be defined as a coprocessor or an accelerator. Supported on IBM z15 and
IBM z16
50 Transitioning to Quantum-Safe Cryptography on IBM Z

https://www.redbooks.ibm.com/abstracts/sg248951.html.

� CRYSTALS-Dilithium 6,5 (Round 3)
� CRYSTALS-Dilithium 8,7 (Round 3)

Also, the following quantum-safe key encapsulation mechanisms (KEM) are supported:

� CRYSTALS-Kyber 1024 (Round 2) is implemented as part of a hybrid key exchange
mechanism

� Hybrid key agreement scheme combining Elliptic Curve Diffie-Hellman (ECDH) and
CRYSTALS-Kyber

Crypto Express7S
When the Crypto Express7S adapters are configured in CCA or EP11 mode, the support for
quantum-safe symmetric algorithms (AES, CMAC, and HMAC), hashing algorithms (SHA-2,
SHA-3), and digital signature algorithms are enabled through CRYSTALS-Dilithium 6,5
(Round 2).

For more information about quantum-safe algorithms, see “New algorithms to counter CRQC
attacks” on page 11.

Hybrid key exchange mechanism
The use of secure keys5 and protected keys in the IBM Z encryption process ensure that
data-encrypting keys are not visible to unauthorized callers (see Figure 4-2).

Figure 4-2 IBM z16 and Crypto Express8S process to create protected keys

When first created, the data-encrypting key is wrapped (encrypted) as a secure key by ICSF
by using a master key, which is stored in the hardware security module (HSM) of an assigned
Crypto Express adapter when configured in CCA mode.

5 A secure key is a data-encrypting key that is encrypted by a master key or key-encrypting key and never appears in
clear text that is outside of a secure environment, such as a tamper-responding HSM, or IBM Z firmware. Secure
keys can be stored in an ICSF key data set or returned to the ICSF caller.
Chapter 4. Getting ready for quantum-safe cryptography 51

In IBM z16 firmware, a hybrid key exchange mechanism that includes CRYSTALS-Kyber,
CRYSTALS-Dilithium, and ECDH is used to securely negotiate a shared transport key (AES
256-bit key) between the Crypto Express8S HSM and the CPACF. The shared transport key is
used to protect data-encrypting keys that are sent from the Crypto Express8S HSM to the
CPACF by way of IBM z16 firmware as part of the runtime process to create protected keys.

A CPACF wrapping key is used to rewrap a data-encrypting key as a protected key. The
protected key is sent to ICSF for use by authorized callers. The CPACF wrapping key is in a
protected area of the hardware system area (HSA) of the IBM Z platform, which is not
accessible to the operating system, applications, or users.

The following process is used to create a protected key from a secure key, as shown in
Figure 4-2 on page 51:

1. ICSF retrieves the data-encrypting key (DK) that is stored in the CKDS as a secure key
(encrypted by using a master key [CCAMK]).

2. ICSF starts the process by sending the secure key (DKCCAMK) to IBM Z firmware.

3. IBM Z firmware sends the secure key to the suitable domain in the Crypto Express8S
HSM.

4. Crypto Express8S HSM decrypts the secure key by using the master key and rewraps the
data-encryption key by using a transport key (TK). The transport key is derived from two
independent contributions of entropy as part of the hybrid key exchange mechanism:

a. The ECDH calculation of the “Z” shared secret6, by using the private key of the IBM Z
firmware and the public key of the Crypto Express8S HSM that is in the CPACF, and
the corresponding public and private keys that are in the Crypto Express8S HSM.

b. The random number that is generated in the Crypto Express8S HSM is sent encrypted
under the CRYSTALS-Kyber public key to the CPACF, which is then signed by a
CRYSTALS-Dilithium private signing key.

5. The rewrapped data-encrypting key (DKTK) is sent back to IBM Z firmware.

6. IBM Z firmware starts CPACF to unwrap and rewrap the data-encrypting key by using a
CPACF wrapping-key (WK) to create a protected key (DKCPCFWK).

7. IBM Z firmware returns the protected key (DKCPCFWK) to ICSF.

8. ICSF caches the protected key in its address space and optionally returns the protected
key to the authorized caller.

4.1.2 IBM Z cryptographic software components

z/OS ICSF provides the application programming interfaces (APIs) by which applications
request cryptographic services, such as the following examples:

� Encryption and decryption
� Digital signature generation and verification
� Hash-based Message Authentication Code (HMAC) generation and verification
� Key and key pair generation
� Data hashing

ICSF callable services and programs can be used to generate, maintain, and manage
operational keys (also known as data-encrypting keys), which are used in cryptographic
operations.

6 Known only to the entities involved in a communication. Possession of that shared secret can be provided as proof
of identity for authentication.
52 Transitioning to Quantum-Safe Cryptography on IBM Z

Figure 4-3 shows the ICSF architecture and its relationship with the IBM Z hardware and
software components.

Figure 4-3 IBM Z software cryptographic components

ICSF supports two cryptographic architectures: CCA and Enterprise PKCS #11 (EP11). ICSF
provides quantum-safe algorithms in both architectures. Software support for the algorithms
is available by way of ICSF.

Hardware support for the algorithms is available through the Crypto Express7S or later. For
more information about supported algorithms for each coprocessor type, see “Minimum
hardware and software for quantum-safe cryptography support” on page 55.

ICSF provides callable services and utilities to generate and store cryptographic keys into
ICSF Key Data Sets (KDS). Each KDS is a VSAM data set for persistent objects (such as
keys and certificates) with programming interfaces for object management. Each record in the
KDS contains the object and other information about the object.

The following types of ICSF Key data sets are available:

� CKDS: Cryptographic Key Data Set: Stores CCA Symmetric Keys such as AES, DES, and
HMAC.

� PKDS: PKA Key Data Set: Stores CCA Asymmetric keys such RSA, ECC, and QSA.

� TKDS: Token Data set: Stores PKCS #11 Keys and Certificates.

If a PKDS is allocated and you want to store CRYSTALS-Dilithium or CRYSTALS-Kyber CCA
key tokens, you must convert your PKDS over to KDSRL format. For more information, see
“Converting your PKDS to KDSRL format” on page 99.
Chapter 4. Getting ready for quantum-safe cryptography 53

Master keys are used to protect sensitive operational keys that are used in your system. The
number and type of master keys active in your system depend on your hardware configuration
and application requirements:

� DES master key protects DES keys
� AES master key protects AES and HMAC keys
� RSA master key protects RSA keys
� ECC master key protects ECC, RSA, CRYSTALS-Dilithium, and CRYSTALS-Kyber keys

Master keys are stored within the secure hardware boundary of the Crypto Express HSM.
The values of the master keys never appear in the clear outside the Crypto Express HSM.

For a master key to become active, the current active master key verification pattern (MKVP)
in the Crypto Express HSM and the MKVP in the KDS header must match. When a new
Crypto Express HSM is added to your environment, it must be loaded with the same master
keys that were used to initialize the KDS.

You can verify the MKVPs in the Crypto Express HSM match the MKVP in the KDS by using
the D ICSF, MKVPS command (see Example 4-1).

Example 4-1 Output from D ICSF, MKVPS command

D ICSF, MKVPS
CSFM668I 18.08.59 ICSF MKVPS 129
 CKDS ICSF.CKDS.NEW
 AES MKVP Date=2022-03-25 00:25:40
 DES MKVP Date=2022-03-23 13:24:53
 ID AES DES
 KDSMKVPS 265995 0C3BE0
 SYSZ 7C00 265995 0C3BE0
 SYSZ 7C01 265995 0C3BE0
 PKDS ICSF.PKDS.NEW
 ECC MKVP Date=2022-03-23 13:25:49
 RSA MKVP Date=2022-03-23 13:25:49
 ID ECC RSA
 KDSMKVPS 2ADB6C 4727DB
 SYSZ 7C00 2ADB6C 4727DB
 SYSZ 7C01 2ADB6C 4727DB
 No TKDS defined or no EP11 adapters online

For more information about the hardware ICSF supports, and master key types and how they
are entered when ICSF first starts, see z/OS Cryptographic Services ICSF Administrator’s
Guide, SC14-7506.
54 Transitioning to Quantum-Safe Cryptography on IBM Z

4.1.3 Minimum hardware and software for quantum-safe cryptography support

Support for quantum-safe algorithms for CCA and PKCS #11 are provided in the IBM z15 and
IBM z16 platforms. To ensure you can transition your applications to quantum-safe
algorithms, verify that your environment meets the minimum hardware and software
requirements for each algorithm.

Table 4-2 on page 55 lists the minimum hardware and software prerequisites to support
quantum-safe cryptography on IBM z15 and IBM z16, based on algorithm strength and
version.

Table 4-2 Minimum hardware and software prerequisites

Algorithm Algorithm
strength

Cryptographic
hardware

ICSF required
APARs

IBM Z platforma

a. Check with your IBM representative for IBM Z hardware driver levels that support quantum-safe
cryptography on IBM z15 and IBM z16.

CRYSTALS-
Dilithium

CRYSTALS-
Dilithium 6,5
Round 2

Crypto Express7S
CCA coprocessor

HCR77D1
OA58880

IBM z15

Crypto Express7S
EP11 coprocessor

HCR77D1
OA58358

CRYSTALS-
Dilithium 6,5
Round 3

CRYSTALS-
Dilithium 8,7
Round 2

CRYSTALS-
Dilithium 8,7
Round 3

Crypto Express8S
CCA coprocessor

HCR77D1
OA61609

IBM z16

Crypto Express8S
EP11 coprocessor

HCR77D2
OA61609

CRYSTALS-
Kyber

CRYSTALS-
Kyber 1024
Round 2

Crypto Express8S
CCA coprocessor

HCR77D1
OA61609

IBM z16

Crypto Express8S
EP11 coprocessor

HCR77D2
OA61609
Chapter 4. Getting ready for quantum-safe cryptography 55

https://www.ibm.com/support/pages/apar/OA61609
https://www.ibm.com/support/pages/apar/OA58358
https://www.ibm.com/support/pages/apar/OA58880
https://www.ibm.com/support/pages/apar/OA61609
https://www.ibm.com/support/pages/apar/OA61609
https://www.ibm.com/support/pages/apar/OA61609

4.2 Steps towards quantum protection

As you begin to plan your transition to quantum-safe technology, several stages must be
considered. These stages include discovering and classifying the data, creating a
cryptographic inventory, considering cryptographic agility, and adopting quantum-safe
cryptography. These topics are described in this section.

4.2.1 Discovering and classifying the data

It is important to classify and identify your most sensitive and valuable data. Classification of
data is vital to help distinguish high-value information from information that does not have the
same protection requirements. Protection requirement applies to data that belongs to your
clients and the data you own.

This process also involves identifying the location of the data and understanding whether any
compliance requirements or regulations are associated with the retention of that data.

Another essential consideration is identifying the internal data that your organization
considers most valuable. It is important to create and manage a data inventory and define
ownership of the data. Classifying data helps prioritize where to apply quantum-safe methods
to protect the data. Some data must be protected because of regulations or standards that
require compliance and those cases and the level of protection that is must be identified.

Some common types of data that must be protected include confidential business data,
intellectual property data, and personally identifiable information (PII), such as social security
numbers or drivers license numbers.

Confidential business data can include items, such as product release information, marketing
strategies, financial reports, and communications with business partners.

Intellectual property can include design documents, research findings, trade secrets, and
formulas. Each organization must identify the information that is most critical to protect.

Although not all data needs the same level of attention, prioritization is required in most cases
during the quantum-safe cryptographic journey. It is important to know where your
organization’s most valuable or sensitive data resides.

Today, you might use encryption at the infrastructure level for data-in-flight or data-at-rest, and
in your applications through middleware or custom application code.
56 Transitioning to Quantum-Safe Cryptography on IBM Z

Figure 4-4 shows where data encryption might be occurring today in your environment.

Figure 4-4 The encryption pyramid

IBM Z pervasive encryption7 can be used to provide quantum-safe protection for data at-rest
with AES.

During the discovery step, you need help from the applications owners to identify the data
they are processing in their applications. You also need the help of your risk and compliance
team because they might already have a mapping of sensitive information and its location. If
not, now is the time to collect such information and define ownership and location of all
sensitive data.

After the ownership of the data and its sensitivity is established, it is key to prioritize the
analysis of the applications and assets if encryption is used and if it is used, which
cryptographic algorithm is being used. Based on this priority list, the application can enter the
cryptographic inventory phase.

A sample application data asset inventory is shown in Figure 4-5.

Figure 4-5 Sample data inventory sheet

7 For more information, see Getting Started with z/OS Data Set Encryption and Getting Started with Linux on Z
Encryption for Data At-Rest.

Data
Type/Assset Application Owner Sensitiviy Priority

Data_1 Application_1, Application_3 Owner_1 High 1
Data_2 Application_2 Owner_2 Low 3
Data_3 Application_4, Application_5 Owner_1 High 2
Chapter 4. Getting ready for quantum-safe cryptography 57

https://www.redbooks.ibm.com/redbooks/pdfs/sg248436.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg248436.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg248410.pdf

4.2.2 Establishing a cryptographic inventory

Another vital stage is the creation of a cryptographic inventory, which is an important security
artifact. A cryptographic inventory helps document the cryptographic algorithms that are used
and why they are used.

For example, if the cryptography is used to digitally sign documents, the cryptographic
inventory indicates specific information, such as the name of the signing application, which
cryptographic algorithms are used, what are the lengths of the cryptographic keys that are
used, and the details of the crypto algorithm provider.

It is important to identify how the documents are signed to determine which mitigation steps
are required. Therefore, creating a repository that shows the cryptographic algorithms that
are in use within the organization is important.

Also, consider areas where cryptography can be hidden from obvious view. Examples include
configuration options that determine the cryptography in use (such as TLS configurations)
and key containers (such as certificates).

If a vendor developed the component that uses cryptography, it is necessary to discuss this
topic with that vendor to understand the cryptography that is used and the vendor’s plans for
adopting quantum-safe technology. After you have this type of information, you must
determine whether the current cryptographic protection is sufficient, or if a mitigation action is
required.

It also is important that you understand which algorithms are not considered quantum-safe
(see 1.4, “Cryptographic vulnerabilities possible with quantum computers” on page 9).

A cryptographic inventory includes many items, such as the following examples:

� Component or application under evaluation
� Function or feature that uses crypto
� Person responsible (Who owns or uses the component?)
� Symmetric algorithms, function, and key size
� Asymmetric algorithms, function, and key size
� Hash algorithms and digest size
� Crypto algorithm implementation (hardware and software)
� Crypto provider (HSM and library)
� Crypto vendor (IBM or open-source)
� Interoperability with business or crypto partners
� Key provisioning and storage

The analysis is performed based on the priority list that is established when the discovering
and classifying the data step is done (see Figure 4-5 on page 57). Each type of data and
application must be assessed to identify the cryptographic algorithm in use. Encryption can
be carried out at the infrastructure or at the application level.

Application owners should know whether and what encryption algorithm is used. If not,
several tools can be used to assist during the cryptographic inventory step, including the
following examples:

� IBM z/OS Integrated Cryptographic Service Facility (ICSF)
� IBM Application Discovery and Delivery Intelligence (ADDI)
� IBM Crypto Analytics Tool (CAT)
� IBM z/OS Encryption Readiness Technology (zERT)

All information that is captured must be recorded and stored in a safe place. A sample
cryptographic inventory sheet (see Figure 4-8 on page 64).
58 Transitioning to Quantum-Safe Cryptography on IBM Z

IBM ICSF cryptographic usage tracking
ICSF cryptographic usage tracking with ICSF HCR77C1 (or later) supports data collection (in
SMF records) for Crypto Express coprocessors, ICSF callable services, and cryptographic
algorithm. The use of the SMF records that are created by the usage tracking provides the
following identification information:

� All the jobs (or tasks) that use ICSF cryptographic services
� Cryptographic algorithm that is used (along with their strength)

The use of ICSF cryptographic usage tracking is an efficient way to build, over time, an
inventory of the cryptographic algorithm usage and identify the candidate to a migration to
quantum-safe algorithm.

Because ICSF cryptographic usage tracking data is stored in SMF records, you can use the
ICSF samples to format the records. You can also use other tools, such as IBM Security
zSecure Audit, for reporting purposes.

You also can send your cryptographic usage to security information and event management
(SIEM) software, such as IBM Security zSecure Adapter for SIEM, which can act as a central
repository for tracking cryptographic algorithm usage real time.

A use case for the use of ICSF cryptographic usage tracking is a first view of your production
application environments to identify where ICSF cryptographic services (and what algorithm)
are being used. From the SMF records, you can identify all the cryptographic services that are
used by applications, middleware, or infrastructure components.

After the classification of the results (which are identified as non-quantum-safe algorithm and
which are quantum-safe), you can prioritize your approach and use other tools to further
complete the inventory.

Later, the results of this analysis, which are classified as quantum-safe, can be analyzed with
other tools to complete your cryptographic inventory.

IBM Application Discovery and Delivery Intelligence
IBM Application Discovery and Delivery Intelligence (ADDI) is an analytical platform for
application modernization. It uses cognitive technologies to analyze mainframe applications
and quickly discover and understand interdependencies of changes.

By using ADDI and the Crypto Analysis function, you can:

� Discover where and what cryptography is used in applications

� Support migration and modernization planning:

– Quickly reacting to security issues
– Store results in a repository

� Capture valuable metadata and dependencies:

– Identifies ICSF Crypto APIs
– Identifies Rule Array and other important parameters

For example, you know that one of your critical applications (written in COBOL) is using
cryptography, but you do not know exactly how this encryption capability was implemented
and what encryption algorithm (and “options”) were used.

By using ADDI and its Crypto Analysis, you can quickly import the COBOL source and
discover what ICSF cryptographic APIs and parameters were used.
Chapter 4. Getting ready for quantum-safe cryptography 59

For more information, see “Using IBM Application Discovery and Delivery Intelligence” on
page 77.

IBM Crypto Analytics Tool
The IBM Crypto Analytics Tool (CAT) was developed to help provide up-to-date monitoring of
cryptography-related information about z/OS in the enterprise. CAT is designed to combine
and present cryptographic information in a way that helps ensure compliance and policy
enforcement.

The CAT Agent, running on z/OS, collects cryptographic information across the enterprise
that is then made available through an IBM Db2® for z/OS database to the CAT Monitor that
is running on your desktop.

The CAT Monitor provides overviews, queries, and reports to better manage the
cryptographic setup.

With CAT, you can generate reports on your cryptographic configuration, compare the
reports, and define and apply policy to your cryptographic elements (cryptographic cards,
keys, and so on).

CAT also helps you identify any cryptographic object that is not quantum-safe in your current
keystores. CAT also provides monitoring over time to ensure that no non-quantum-safe
cryptographic object are created.

For example, if your applications use encryption through middleware, you can identify the
keys in the keystore that belong to this application with the CAT Monitor. You also can verify
how cryptographic security was implemented to protect cryptographic objects, and who can
access them8.

For more information, see “Using IBM Crypto Analytics Tool” on page 82.

IBM z/OS Encryption Readiness Technology
z/OS Encryption Readiness Technology (zERT) is a Communications Server feature that
provides information about the cryptographic network protection state of TCP/IP and
Enterprise Extender connections that end on a z/OS system.

zERT writes its data collection in SMF records (SMF type 119 subtype 11 and subtype 12).

zERT helps you answer the following questions:

� What TCP/IP and Enterprise Extender traffic is being protected (and which is not)?

� How is that traffic protected? For example, what protocols are being used, which
cryptographic algorithms are being used, and what key lengths?

� Who on my z/OS system uses or produces the network traffic, whether it is protected or
not?

� Where is the remote endpoint for that traffic?

� With zERT policy-based enforcement, you can write rules to enforce real-time compliance
monitoring that can generate audit events and even take defensive actions that are based
on the observed cryptographic protection attributes of each TCP/IP connection.

8 Only when using IBM RACF
60 Transitioning to Quantum-Safe Cryptography on IBM Z

A z/OS Management Facility (z/OSMF) plug-in that is called IBM zERT Network Analyzer is
provided since z/OSMF V2R49. IBM zERT Network Analyzer is a web-based graphical user
interface10 that z/OS network security administrators can use to analyze and report on data
that is reported in zERT Summary records (SMF type 119 subtype 12).

By using IBM zERT Network Analyzer, you can build your own cryptographic inventory for
data that is in-flight by using its reporting capabilities. The reports can be exported in CSV
format to be integrated in enterprise-level repository, if needed.

Finally, starting with z/OS 2.5, zERT provides a feature that is called zERT Policy
Enforcement. With zERT Policy Enforcement, you can define required network security policy,
including the encryption algorithm in use and then, direct the TCP/IP stack to take specific
actions for connections that do not meet that defined policy.

When triggered, the policy can take the following actions to keep your environment
quantum-safe:

� Allow the connection with no logging

� Write an audit record by using the System Management Facility (SMF) or real-time
Network Management Interface (NMI)

� Write a syslog daemon message

� Write a console message

� Reset the connection

For more information, see “Using IBM z/OS Encryption Readiness Technology” on page 89.

4.2.3 Considering cryptographic agility

Cryptographic agility is about the ability to quickly adopt new cryptography in an application,
component, or system with minimal impact to the underlying infrastructure. Over time, we saw
and understand that cryptographic algorithms change.

However, many applications used hardcoded cryptographic primitives that might not be easy
to change. Going forward, we must consider ways to make it as easy as possible to manage
the cryptography that is in use in our enterprises.

Several dimensions of agility must be considered (see Table 2-4 on page 25):

� Update cryptographic algorithms when broken
� Change cryptographic algorithms when new regulatory requirements exist
� Monitor cryptographic algorithms to ensure that those algorithms are used correctly
� Retire cryptographic algorithms when obsolete

Cryptographic agility is a core component of cyber resiliency. If a cryptographic algorithm is
found to no longer be secure, the ability to switch to a secure algorithm quickly is essential.
We must consider effective ways to manage and use cryptography and automation to simplify
the transition to new cryptography.

One way to achieve cryptographic agility is to decouple the cryptographic algorithm from the
application code, which makes the change to another encryption algorithm faster, without
changing the application code again.

9 Also supported by z/OS 2.3 and PTFs for zERT Network Analyzer V2R3 APAR PH03137 and z/OSMF V2R3
APARs PH04391 and PH00712.

10 IBM Db2 11 for z/OS or later is required.
Chapter 4. Getting ready for quantum-safe cryptography 61

For example, Advanced Crypto Service Provider (ACSP) can be used to provide an
abstraction layer between the application code and the encryption of data by using the IBM Z
capabilities.

Advanced Crypto Service Provider
The enterprise cryptographic environment can be spread over several different systems with
individual HSMs and application landscape. Therefore, ensuring that all the platforms and
environments are remaining quantum-safe might be a challenge.

To help achieve cryptographic agility in a client/server environment, you can centralize the
execution of cryptographic operations and establish Crypto-as-a-Service.

One of the IBM Z solutions for establishing Crypto-as-a-Service is to use the cryptographic
provider Advanced Crypto Service Provider (ACSP).

With ACSP, you can use your low-used IBM Z cryptography and make it available for all your
platforms where applications must use quantum-safe cryptography.

By using the User Defined Functions (UDF) with ACSP, you can implement business-specific
functions that are made available through ACSP where the application requests cryptography,
without needing to handle the encryption by alone. This ability makes the application
crypto-agile because the cryptographic policy is applied at the ACSP server level, which
ensures that the correct algorithm is used to encrypt and decrypt the data (see Figure 4-6).

Figure 4-6 UDF calling path for a local and deployed set-up
62 Transitioning to Quantum-Safe Cryptography on IBM Z

A possible architecture that implements cryptographic agility by using ACSP is shown in
Figure 4-7.

Figure 4-7 ACSP architecture used for cryptographic agility

4.2.4 Adopting quantum-safe cryptography

After you know your current cryptography state, examine the technical mitigations that are
available to you. Understand who can provide the necessary technology. Determine which
options must be applied to each of your use cases.

For more information about common use case examples, see Chapter 3, “Using
quantum-safe cryptography” on page 27.

A risk assessment is performed to determine the priority of implementation and testing. Some
implementation options include strengthening the symmetric algorithms that are used for data
protection.

Use hybrid key exchange methods or dual signing schemes that use classical and
quantum-safe algorithms. When necessary, the use of physical isolation techniques also is an
option because it keeps critical information off the network and puts data on systems that
feature restricted access and controls in place.

Educating your teams about the options and early planning and testing is key to having a
successful quantum-safe transition experience.
Chapter 4. Getting ready for quantum-safe cryptography 63

When all of the data, application, and cryptographic key and algorithm information is collected
and recorded and a priority list established, the implementation phase can start. A sample
cryptographic inventory sheet is shown in Figure 4-8.

Figure 4-8 Sample cryptographic inventory sheet

Based on the discovered items, the applications (or infrastructure components) must move to
quantum-safe encryption if they are not quantum-safe (AES 256 is quantum-safe).

An example of a non-quantum-safe condition is an application that signs data with RSA. To
make it quantum-safe, a dual signature scheme is used following NIST recommendations.

A dual signature consists of two (or more) signatures on a common message. The verification
of the dual signature requires all of the component signatures to be successfully verified.

In a dual signature, one signature is generated with a NIST-approved signature scheme as
specified in FIPS 186, while another signatures can be generated by using a different
algorithm.

Dual signatures can be accommodated by current standards in “FIPS mode,” as defined in
FIPS 140, if at least one of the component methods is a correctly implemented,
NIST-approved signature algorithm. It is up to the application to specify how to parse
signatures and verify them separately.

For more information, see the following resources:

� This NIST post-quantum cryptography (PQC) web page
� This French National Cybersecurity Agency (ANSSI) web page

Some technical environment upgrades or modifications might be required to support
quantum-safe cryptography. For more information, see 4.1, “IBM Z cryptographic components
overview” on page 48, and “Ensuring the environment is ready” on page 101.

4.2.5 Where to find help at IBM

IBM Systems Lab Services offers a quantum-safe assessment, which is a useful way to
quickly understand how your company uses IBM Z cryptographic features and to inventory
the cryptography in use today to maximize quantum-safe capabilities of your IBM Z
environment.

The assessment analyzes current best practices and provides a practical roadmap of actions
to strengthen your quantum-safe posture.

For more information, email us at mailto:ibmsls@ibm.com.
64 Transitioning to Quantum-Safe Cryptography on IBM Z

mailto:ibmsls@ibm.com
https://www.nccoe.nist.gov/crypto-agility-considerations-migrating-post-quantum-cryptographic-algorithms
https://www.ssi.gouv.fr/en/publication/anssi-views-on-the-post-quantum-cryptography-transition/

4.3 Best practices, mitigation options, and tools

This section provides information about how to use security best practices to build a secure
z/OS cryptographic environment. It also includes some mitigation options that you can use
along with an introduction to the key management tools, which must be considered during
your quantum-safe journey.

4.3.1 ICSF best practices

Implementing a secured cryptographic environment on z/OS is the foundation for building a
strong quantum-safe cryptographic environment. The following sections describe best
practices for ICSF.

ICSF configuration
ICSF more likely is the repository for all of your keys. Therefore, you must ensure it is
configured for the maximum level of security for your encrypted data. We suggest configuring
ICSF by using the following settings:

� No compatibility/coexistence mode

Compatibility mode was introduced to run applications written with Programmed
Cryptographic Facility (PCF), ICSF ancestor, without reassembling the application.
Because these applications likely use weak non-quantum-safe algorithm, they must be
converted to ICSF and use quantum-safe algorithm.

If you still use AMS REPRO encryption (which requires compatibility mode), you must use
other means to encrypt your data. IDCAMS ENCIPHER/DECIPHER works with weak
56-bit DES key (no Triple DES support).

Also, changing the master keys in compatibility mode requires an IPL of the system.

Verify that the parameter COMPAT(YES) or COMPAT(COEXIST) is not specified in
CSFPRMxx. The default is COMPAT(NO).

� No special secure mode

When special secure mode (SSM) is enabled, ICSF enables the generation or entry of
clear keys, which lowers the security of the system. Clear keys usage should not be
allowed.

Verify that the parameter SSM(YES) is not specified in CSFPRMxx. The default is
SSM(NO). SSM can also be enable by a CSF.SSM.ENABLE.SAF profile in the XFACILIT
resource class. Ensure it is not defined.

� Allocation of the xKDS

The xKDS data sets that are managed by ICSF more likely contain all of your keys. You
must ensure that the initial allocation of these data sets allows growth.

To support quantum-safe keys, the xKDS must be in KDSRL format (see
SYS1.SAMPLIB(CSFCDKS) and SYS1.SAMPLIB(CSFPKDS) as provided with ICSF
HCR77D2 (z/OS 2.5).

The CKDS, PKDS contains one initialization record with the values of the current master
keys verification patterns (MKVPs) for the type of keys that are stored in the keystore (AES
and DES MKVPs for the CKDS, ECC, and RSA MKVPs for the PKDS).

Then, each VSAM record contains one key.
Chapter 4. Getting ready for quantum-safe cryptography 65

The default found in the SYS1.SAMPLIB allocates a CKDS with 200 keys in the primary
extent and 100 in each secondary extent. It also allocates a PKDS with 100 keys in the
primary extent and 50 in each secondary extent.

When allocating your CKDS, consider your number of keys and the growth that is
expected from a data encryption perspective. This growth must include key rotation in the
coming years and factor how long you must keep old keys “alive” in your CKDS to access
old data from backups you must keep for regulatory purposes.

An installation that includes 100 keys in their CKDS, an application encryption requirement
growth of 10% per year, rotates their operational keys every year, and a 10-year data
retention period must be prepared to store more than 500 keys.

Taking a large margin and over-allocating the CKDS to 1000 records in the primary extend
uses only 10 tracks total (VSAM DATA + INDEX).

ICSF and z/OS security best practices
These z/OS security best practices aid in enhancing the protections across the z/OS
cryptographic stack. Locking down the z/OS cryptographic stack enables you to realize the
following benefits:

� Reduce the attack surface of your z/OS environment
� Enable routine security hygiene practices
� Use new capabilities and features
� Meet regulatory compliance requirement

Key label naming conventions
Cryptographic keys that are stored in the ICSF key data sets can be referenced by their key
label. A key label can be up to 64 characters and consist of alphanumeric characters, national
characters (#, $,@), or a period. When determining a key label name, consider the following
factors:

� LPAR that is associated with the key
� Type of data that is encrypted
� Owner that is associated with the key
� Date that the key was created
� Application that uses the key
� A sequence number for the key

Consider the following key label example:

SYS1.DB2.ENCKEY.202204.0001

Protecting cryptographic keys and ICSF services
Access to CCA cryptographic keys is controlled through the CSFKEYS general resource
class. When a key is used in an application, ICSF checks for a discrete CSFKEYS profile that
matches the key’s label.

If a covering profile (discrete or generic) exists, access to the key is granted based on
whether the user or group has READ access. By default, the CSFKEYS class grants access
to the key if no profile is in place.

Ensure that the CSFKEYS class is ACTIVE and RACLISTed and a backstop profile exists; for
example, ‘*’ or ‘**’ with UACC(NONE).

Access to PKCS #11 tokens is controlled through the CRYPTOZ general resource class. By
default, the CRYPTOZ class does not grant access to the PKCS #11 token if no covering
profile exists.
66 Transitioning to Quantum-Safe Cryptography on IBM Z

Ensure that the CRYPTOZ class is ACTIVE and RACLISTed. Define USER.* and SO.*
backstop profiles with UACC(NONE).

For more information about protecting PKCS #11 tokens with the CRYPTOZ class and the
USER and SO (Security Officer) rules, see z/OS ICSF Writing PKCS #11 Applications,
SC14-7510.

Access to ICSF callable services is controlled through the CSFSERV general resource class.
When an ICSF service is called, ICSF checks for a discrete CSFSERV profile that matches
the service name. By default, access to most ICSF services is granted if no covering profile
exists.

Also, ensure that the CSFSERV class is ACTIVE and RACLISTed. Define a backstop profile;
for example, ‘*’ or ‘**’ with UACC(NONE).

Key lifecycle and key usage auditing
ICSF instances can be configured to audit the lifecycle of keys as they transition through the
system. Keys can be audited from the time of their initial generation until their eventual
deletion. Key lifecycle audit data is written as SMF Type 82 subtype 40, 41, and 42 records.

ICSF key lifecycle auditing includes the following options:

� AUDITKEYLIFECKDS: In the CKDS
� AUDITKEYLIFEPKDS: In the PKDS
� AUDITKEYLIFETKDS: In the TKDS

Key Lifecycle auditing can be enabled in the ICSF installation options data set or dynamically
by using the SETICSF command.

ICSF instances can be configured to audit key usage. Key usage data can be used to
determine which key was used, who used the key, and when the key was used. Key usage
audit data is written as SMF Type 82 subtype 44, 45, 46, and 47 records.

ICSF key usage auditing includes the following options:

� AUDITKEYUSGCKDS: CCA symmetric tokens
� AUDITKEYUSGPKDS: CCA asymmetric tokens
� AUDITPKCS11USG: EP11 keys

Key usage auditing can be enabled in the ICSF installation options data set or dynamically by
using the SETICSF command.

For more information about ICSF key lifecycle and key usage auditing, see z/OS ICSF
System Programmer’s Guide, SC14-7507.

SAF protecting the ICSF Key Data Sets
ICSF Key Data Sets contain the CCA and EP11 cryptographic keys that are used within ICSF
callable services. Although use of the keys can be protected with the CSFKEYS and
CRYPTOZ general resource classes, the Key Data Sets also must be SAF protected.

Without sufficient SAF protections on all three ICSF Key Data Sets, the ICSF keys are at a
greater risk of becoming compromised. Regardless of whether you use clear or secure keys,
each of your ICSF Key Data Sets must include a DATASET profile with UACC(NONE).
Chapter 4. Getting ready for quantum-safe cryptography 67

Backing up ICSF keys
It is important to adopt a routine schedule of backing up the ICSF keystores. Backing up the
keystore is recoverable. By regularly backing up the DASD volumes that contain the key
stores, the entire volume can be restored if the volume becomes corrupted.

Also, create backups before and after major key management operations. For example,
performing an unfamiliar key management operation, generating many new keys, or after a
master key rotation.

When creating your backup, consider whether you should have an online or offline backup. An
online backup provides the quickest recovery from a corrupted keystore or deletion, but it is
also susceptible to attack by a bad actor.

An offline backup (for example to tape) safeguards a keystore from being compromised by
malicious software with access to online devices. Although offline backups might not be as up
to date, they are less likely to be compromised.

If you using or plan to implement z/OS data set encryption, we suggest that you deploy a
robust key management solution, especially as the number of keys to manage increases.

For more information about calculating the number of encryption keys you might need for your
environment, see this IBM Support publication.

4.3.2 Mitigation options

z/OS includes many features and functions that directly provide quantum-safe encryption for
your data when at-rest or when a quantum-safe digital signature is used. The use of
quantum-safe encryption algorithm for data-at-rest can provide the following mitigation
options if the data remains encrypted while in transit:

� z/OS data set encryption

When implemented, z/OS data set encryption provides a high level of protection for your
sensitive data when stored in z/OS data sets (extended format sequential data sets,
extended format VSAM data sets, and basic and large nonextended format sequential
data sets).

z/OS data set encryption is based on AES-XTS block cipher mode with keys of 256 bits
strength; therefore, it is considered quantum-safe.

Also, z/OS data set encryption does not require application changes when it is
implemented; therefore, it ensures a short path to quantum-safe encryption.

� JES2 spool encryption

Because JES2 spool encryption is based on the same technology as z/OS data set
encryption, the same level of protection to your data is provided during and after job
execution.

This option is another a short path to quantum-safe encryption.

� Digital signature and SMF

It is important to protect your data and the data of your clients or Business Partners, but it
is also important to ensure that audit trails are not tampered. SMF digital signature
provides an easy way to digitally sign the SMF records.

When written to the log stream, the SMF records are hashed and SMF periodically signs
the hash by using a private key.
68 Transitioning to Quantum-Safe Cryptography on IBM Z

https://izswebpage.mybluemix.net/docs/keys.pdf

When reading the records, the utility program IFASMFDP verifies that the records were
not corrupted or tampered.

The alternative signature algorithm introduced the use of Dilithium digital signature with
RSA or ECDSA, which makes SMF digital signing quantum-safe. This support requires an
IBM z15 or IBM z16 environment for the entire sysplex.

4.3.3 Key management tools

The use of a quantum-safe cryptographic algorithm is only a first step. Correctly managing
the keys that are used by these cryptographic algorithms also is important to ensure they are
safely stored and transported and maintain compliance.

Trusted Key Entry
TKE is an integrated solution that manages cryptographic keys, such as master keys and
initial key encrypting keys (KEKs) in a secure environment. The TKE Workstation enables
basic local and remote key management. It is an optional hardware feature of IBM Z that
provides a management tool for IBM Z host cryptographic coprocessors.

The TKE feature contains a combination of hardware, firmware, and software. For more
information, see this IBM Z and LinuxONE Content Solutions web page.

In a quantum-safe environment, it is paramount that all master keys in the xKDS are safely
managed and stored. Master keys should never be exposed in the clear or wrapped with
non-quantum-safe keys in a virtual safe.

With TKE, all the keys are generated in a cryptographic adapter coprocessor in the
workstation and are never accessible in the clear. Even if optional, we recommend the use of
TKE with smart card readers and smart cards to store and backup the keys. This
configuration ensures the highest level of security and compliance.

With IBM z16 and TKE v10.0, a CRYSTALS-Kyber handshake occurs between the TKE
Workstation cryptographic adapter and the target Crypto Express HSM when CCA master
key parts are loaded into the target.

IBM Enterprise Key Management Foundation
Enterprise Key Management Foundation (EKMF) is a flexible and highly secure key
management system for the enterprise. It provides centralized key management on IBM Z
and distributed platforms for streamlined, efficient, and secure key and certificate
management operations.

EKMF consists of an independent workstation (with IBM 4767 cryptographic coprocessors),
and software that ensures a high security environment. For more information, see the IBM
EKMF web page.

Note: Crypto Express8S and Crypto Express7S features that include quantum-safe
capabilities that are enabled cannot be in the same TKE domain group as those features
without quantum-safe capabilities enabled.
Chapter 4. Getting ready for quantum-safe cryptography 69

https://www.ibm.com/support/z-content-solutions/trusted-key-entry/
https://www.ibm.com/security/key-management/ekmf
https://www.ibm.com/security/key-management/ekmf

All keys and certificates are stored in a central repository with metadata, such as activation
dates and usage. By storing all key material in a central repository, backup is easily achieved
by including the database in database backup procedures. This feature facilitates easy
recovery if keys or certificates are lost.

You can transition to the EKMF Workstation at any time during your quantum-safe encryption
journey. The EKMF Key Remote Store Viewer and Importer is available for that purpose.

The EKMF Workstation supports CRYSTALS-Dilithium (see Figure 4-9).

Figure 4-9 EKMF Workstation CRYSTALS-Dilithium support
70 Transitioning to Quantum-Safe Cryptography on IBM Z

Chapter 5. Creating a cryptographic
inventory

Before transitioning to quantum-safe algorithms, it is important to create a cryptographic
inventory that covers all aspects of cryptography in your enterprise. This process includes
classifying the data to help you identify where your sensitive data is stored inside and outside
the IBM Z environment.

The cryptographic inventory also lists the certificates, encryption protocols, algorithms, and
key lengths that are used and indicates those that are weakened by quantum computers. For
more information about for an approach for creating a cryptographic inventory, see
“Establishing a cryptographic inventory” on page 58.

This chapter shows you how to configure, run, and interpret the results for each of the
cryptographic inventory creation tools and includes the following topics:

� 5.1, “Collection tools overview” on page 72
� 5.2, “Using ICSF cryptographic usage tracking” on page 73
� 5.3, “Using IBM Application Discovery and Delivery Intelligence” on page 77
� 5.4, “Using IBM Crypto Analytics Tool” on page 82
� 5.5, “Using IBM z/OS Encryption Readiness Technology” on page 89

5

© Copyright IBM Corp. 2022. 71

5.1 Collection tools overview

IBM provides several tools that can aid in the cryptographic discovery process and developing
a cryptographic inventory for your IBM Z environment. Each tool provides unique information
for creating a cryptographic inventory:

� IBM z/OS Integrated Cryptographic Service Facility (ICSF) cryptographic usage tracking
records are written as SMF records aggregating usage of cryptographic engines,
cryptographic services, and cryptographic algorithms.

� IBM Application Discovery and Delivery Intelligence (ADDI) analyzes COBOL application
files that capture valuable metadata and dependencies by identifying important ICSF
parameters for crypto algorithms.

� IBM Crypto Analytics Tool (CAT) creates snapshots of the z/OS environment by extracting
security and cryptographic information that is based on defined policies.

� IBM z/OS Encryption Readiness Technology (zERT) collects and reports the
cryptographic security attributes of IPv4 and IPv6 application traffic that is protected by
using the TLS/SSL, SSH, and IPsec cryptographic network security protocols.

After the information is collected, perform a gap analysis to determine whether business,
compliance, and audit requirements are being met. The gap analysis aids you in prioritizing
updates for your environment.

For more information about a process for making use of the various tools to identify the
cryptographic algorithm, key length, and key label information that is related to COBOL
programs, see Appendix A, “Finding cryptographic attributes” on page 121.
72 Transitioning to Quantum-Safe Cryptography on IBM Z

5.2 Using ICSF cryptographic usage tracking

Beginning with ICSF FMID HCR77C1, ICSF instances can be configured to collect
cryptographic usage data when crypto operations are performed by that ICSF instance. ICSF
creates an SMF record type 82, subtype 31 to aggregate crypto usage statistics for each job
or user that is associated with the crypto usage in a specified period.

ICSF cryptographic usage tracking (see Figure 5-1) features the following options for
collecting statistics:

� ENG: Crypto Express adapters, CPACF, and software
� SRV: ICSF callable services and UDXes
� ALG: Cryptographic algorithms that are used within ICSF crypto operations

Figure 5-1 ICSF cryptographic usage tracking overview

5.2.1 Configuring SMF for ICSF cryptographic usage tracking

Before ICSF can write SMF records for cryptographic usage, the SMFPRMxx member in
PARMLIB (see Example 5-1 on page 74) must be updated to contain the following
components:

� The collection interval (INTVAL).

Cryptographic usage tracking is synchronized to the SMF recording interval. In our
example, ICSF records crypto usage every 5 minutes.

� The synchronization value (SYNCVAL).

Synchronizes the recording interval with the end of the hour of the TOD clock. In our
example, ICSF starts recording crypto usage at the end of the hour.

Note: It is essential to collect the records over a sufficient period, capturing as much
workload and key usage as possible. This process helps build a more comprehensive
cryptographic inventory.

Chapter 5. Creating a cryptographic inventory 73

� The Cryptographic Usage Statistics subtype 31 for ICSF type 82 records (TYPE).

Specifies the type of records to be recorded. In our example, SMF 82 subtype 31 is
specified.

Example 5-1 SMFPRMxx member example

DSNAME(SMF.MANA,SMF.MANB) /* SMF Data sets */
INTVAL(05) /* INTERVAL – 5 minutes */
SYNCVAL(00) /* SYNCHRONIZATION – 0 minutes */
SYS(TYPE(0,2,3,82(31),83,128:132)) /* ICSF SMF 82 subtype 31 */

5.2.2 Enabling cryptographic usage tracking within ICSF

Cryptographic usage tracking can be enabled within ICSF by using one of the following
methods:

� Through the installation options that are used for ICSF initialization

The CSFPRMxx member in PARMLIB must contain the STATS option. As shown in
Example 5-2, all three STATS options are enabled. STATS(ALG) must be specified to
enable algorithm usage tracking. STATSFILTERS(NOTKUSERID) can be optionally
specified to exclude the task level user ID from the stats aggregation criteria. This option is
intended for environments that features a high volume of operations that are running under
task level user IDs, which reduces the number of SMF 82 Subtype 31 records written.

Example 5-2 CSFPRMxx options

CKDSN(SYS1.CKDS)
PKDSN(SYS1.PKDS)
TKDSN(SYS1.TKDS)
STATS(ENG,SRV,ALG)
STATSFILTERS(NOTKUSERID)

� Dynamically enable cryptographic usage tracking by using the SETICSF command (see
Example 5-3).

Example 5-3 SETICSF command

SETICSF OPT,STATS=(ALG)

The STATS setting can be verified by using the DISPLAY ICSF,OPT command (see
Example 5-4).

Example 5-4 DISPLAY ICSF,OPT output

D ICSF,OPT
 CSFM668I 12.44.17 ICSF OPTIONS 907
 SYSNAME = SY1 ICSF LEVEL = HCR77D2
 LATEST ICSF CODE CHANGE = 02/21/22
 Refdate update interval in Days/HH.MM.SS = 005/00.00.00
 Refdate update period in Days/HH.MM.SS = 000/01.00.00
 MASTERKCVLEN = display ALL digits
 AUDITKEYLIFECKDS: Audit CCA symmetric key lifecycle events
 SYSNAME LABEL TOKEN
 SY1 Yes Yes
 AUDITKEYLIFEPKDS: Audit CCA asymmetric key lifecycle events
 SYSNAME LABEL TOKEN
74 Transitioning to Quantum-Safe Cryptography on IBM Z

 SY1 Yes Yes
 AUDITKEYLIFETKDS: Audit PKCS #11 key lifecycle events
 SYSNAME TOKOBJ SESSOBJ
 SY1 Yes Yes
 AUDITKEYUSGCKDS: Audit CCA symmetric key usage events
 SYSNAME LABEL TOKEN Interval Days/HH.MM.SS
 SY1 No No 000/02.00.00
 AUDITKEYUSGPKDS: Audit CCA asymmetric key usage events
 SYSNAME LABEL TOKEN Interval Days/HH.MM.SS
 SY1 No Yes 000/01.00.00
 AUDITPKCS11USG: Audit PKCS #11 usage events
 SYSNAME TOKOBJ SESSOBJ NOKEY Interval Days/HH.MM.SS
 SY1 No No Yes 000/05.00.00
 STATS:
 SY1 ALG
 COMPLIANCEWARN: Compliance warning events
 SY1 PCI-HSM 2016 Yes
 TRACKCLASSUSAGE:
 SY1 NONE

5.2.3 Formatting cryptographic usage statistics records

After ICSF cryptographic usage tracking is enabled for algorithms, run applications on the
ICSF instances with tracking enabled. As a result, SMF cryptographic usage records are
generated.

ICSF provides formatters in SYS1.SAMPLIB (CSFSMFJ) that is the JCL that can be
submitted to read SMF record type 82 and format them into a report. CSFSMFR is the REXX
exec that is used to run the report against the SMF records.

A formatted report of SMF record type 82, subtype 31 (hex ‘001F’) is shown in Example 5-5.

Example 5-5 Formatted report of SMF record type

Type=82 Subtype=001F Crypto Usage Statistics
Written periodically to record crypto usage counts
22 Feb 2022 15:12:27.73
 TME... 005389D5 DTE... 0122053F SID... SP21 SSI... 00000000 STY... 001F
 INTVAL_START.. 02/22/2022 19:11:30.001815
 INTVAL_END.... 02/22/2022 19:12:27.737573
USERID_AS.....DATAOWN
 USERID_TK.....
 JOBID.........J0000055
 JOBNAME.......DATAOWN
 JOBNAME2......
 PLEXNAME......SYS1
 DOMAIN........0
 ENG...CARD...8C11/99EA6127...17
 ENG...CPACF...150
 ALG...DES56......2
 ALG...AES128.....2
 ALG...RSA1024....1
 ALG...ECCBP192...1
 ALG...MD5........45
 ALG...RPMD160....15
Chapter 5. Creating a cryptographic inventory 75

 ALG...SHA1....... 70
 ALG...SHA3-224... 13
 ALG...SHA3-256... 15
 ALG...SHA3-384... 13
 ALG...SHA3-512... 13
 ALG...SHAKE128... 12
 ALG...SHAKE256... 14
 SRV...CSFKYT..... 2
 SRV...CSFDSG..... 2
 SRV...CSFOWH..... 264
 SRV...CSFOWH1.... 3
 SRV...CSFIQF..... 485
 SRV...CSFIQF2.... 2
**

Interpreting cryptographic usage statistics SMF records
After you formatted the cryptographic usage statistics SMF records, you can begin identifying
algorithms that are used in applications that must be replaced.

In Example 5-5 on page 75, algorithms DES56, AES128, and RSA1024 were used in crypto
operations within the SMF recording interval. The SMF record lists the HOME address space
ID or HOME address space job name, which are the job or task that started the cryptographic
request.

The SMF record also can list the SECONDARY address space job name (for example, the
caller that made the program call or space switch to ICSF), the HOME address space user ID,
and the task level user ID if available.

In Example 5-5 on page 75, the usage event is recorded for jobname DATAOWN. It occurred
on system SYS1 and used crypto domain 0.

DES56, RSA1024, AES128, SHA-1 are examples of weak algorithm candidates to prioritize
for migration in your cryptographic inventory.
76 Transitioning to Quantum-Safe Cryptography on IBM Z

5.3 Using IBM Application Discovery and Delivery Intelligence

IBM ADDI (see Figure 5-2) is an analytics platform for mainframe application modernization.
It identifies and visualizes application dependencies and helps you quickly understand the
impact of changes.

Figure 5-2 IBM ADDI flow

IBM Application Discovery Build Client is part of the IBM ADDI product suite. By using IBM
Application Discovery Build Client to perform application crypto analysis, you can realize the
following benefits:

� Efficiently locate and identify where crypto is used in applications.

� Capture valuable metadata and dependencies by identifying important ICSF parameters,
such as “Rule Array”.

� Store analysis results in a repository.

� Plan migration and modernization efforts.

� React quickly to potential security issues.

Note: As of this writing, this support is available for COBOL applications only.
Chapter 5. Creating a cryptographic inventory 77

5.3.1 Configuring IBM AD Build Client for ICSF crypto analysis

The following steps assume that the installation and configuration process is complete for
ADDI. For more information about this process, see this IBM Documentation web page.

Complete the following steps to configure and run IBM Build Client against your COBOL
application:

1. Verify that the CRYPTO resolutions file (CAPIResolutions.json) is available in the
\bin\release folder. This folder is where the AD Build Client executable
(IBMApplicationDiscoveryBuildClient.exe) is stored.

The following default path is used by the installation:

C:\Program Files\IBM Application Discovery and Delivery Intelligence\IBM
Application Discovery Build Client\bin\release

2. Open the AD Build Client tool and create a project by clicking File → New → New Project
(see Figure 5-3).

Figure 5-3 Creating an IBM AD Build client

3. Upload your COBOL application files to the project. You should downloaded these files
from your mainframe. These COBOL files are scanned and analyzed for CALL
statements, which are calls to ICSF cryptographic services. Complete the following steps:

a. Right-click zOS Cobol project folder → Add Files.

b. Locate the files on your local machine, select them, and click OK.

c. Repeat step 2 until all application files are added to the project.

Note: After the installation is complete, CAPIResolutions.json can be found in the
\bin\release\Samples folder. Copy the .json file and place it in the bin\release folder.

78 Transitioning to Quantum-Safe Cryptography on IBM Z

https://www.ibm.com/docs/en/addi

d. After the project tree is populated, click File → Save Project (see Figure 5-4).

Figure 5-4 IBM AD add COBOL application window

4. Build the project by clicking Build → Build Project. Then, wait until the build process
completes. Two files are generated that are related to ICSF crypto CALLs:

– GenericAPI_<timestamp>.csv
– GenericAPI_<timestamp).html

5. Locate the Project path on disk and the change directory to:

<Project path>/Reports/GenericAPI.

For example:

C:\IBM AD\Mainframe Projects\<your_project_name>\Reports\GenericAPI

The .csv file can be read as is or used as input by other tools as raw input.

The .html file can be used as a report where the results can be filtered according to
various criteria.

Chapter 5. Creating a cryptographic inventory 79

5.3.2 Interpreting IBM AD Build Client file results

In Figure 5-5, each CALL statement is uniquely identified by an ID in column A (OccurID);
CALLs to ICSF CRYPTO service are in column B (APIName). The file where the CALL is
stored is in column K (PathStr) at the line in column L (StartRow).

The CALLs parameter values are in column G (ParamValue) and form one of more tuples in
column H (GroupID), which correspond to the parameter positions column F (OrdinalPos) that
is specified in the CAPIResolutions.json for the respective service.

If no CALL statements to ICSF cryptographic services are found within the COBOL source
files, an empty report is generated with the message:

GenericAPI query returned no results.

Figure 5-5 IBM AD Build client results example

When reviewing the results, pay attention to the APIMetadata and ParamValue columns.
These columns provide insight into the type of algorithms that are used within the ICSF crypto
service call. When building your cryptographic inventory, consider adding programs that
contain ICSF calls with weak algorithms, such as DES.

5.3.3 Interpreting the CRYPTO CAPIResolutions.json resolutions file

The CRYPTO Resolutions (CAPIResolutions.json) file is a configuration file with the possible
API calls, the parameters to capture, and information about ICSF calls. The ADDI build
process uses this file to capture the data and can be extended or customized (see
Example 5-6).

Example 5-6 CRYPTO Resolution file snippet example

{ "formatVersion":"1.0",
…
"GenericAPIs":
[
 ...
 { "GenericAPIName":"CSNBENC1,CSNEENC1",
 "Description":"Encipher",
 "Metadata":"DES",
 "Metadata1": "Encryption/Decryption",
 "Parameters":
 [
 { "Name":"RULE_ARRAY_COUNT",
80 Transitioning to Quantum-Safe Cryptography on IBM Z

 "Position":9,
 "DefaultValues":"0" },
 { "Name":"RULE_ARRAY",
 "Position":10,
 "DefaultValues":"INITIAL, TOKEN" }
]
 }
 ...
]
 }

Where:

� GenericAPIName: Name of the ICSF service (if that service has several names, you can
initialize it with all of the values separated by comma)

� Description: Short description of the service

� Metadata: Algorithm used by that service

� Metadata1: Category to which that service belongs

� Parameters: Array of parameter objects where each object includes the following
information:

– _Name: Parameter name (for example, for the Rule Array Parms column:
RULE_ARRAY_COUNT and RULE_ARRAY names are used. For any Other Parms, PARAM<No>
is used; for example, PARAM6, PARAM7, and PARAM8).

– _Position: Position of that parameter for which we want to collect its values.

– _DefaultValues: Comma-separated default parameter values, if applicable.

5.3.4 Extending the CRYPTO CAPIResolutions.json resolutions file

If you use an abstraction layer within the COBOL source files that is built on top of the
standard cryptographic libraries (CCA and ICSF), the CAPIResolutions.json file must be
edited and extended with the client interfaces (see Example 5-7).

Example 5-7 Custom CAPIResolutions.json file

{
 "GenericAPIName":"MYENCPHR",
 "Description":"Custom Encipher",
 "Metadata":"DES",
 "Metadata1": "Custom Implementation of Encryption/Decryption",
 "Parameters":
 [
 { "Name":"RULE_ARRAY_COUNT",
 "Position":9,
 "DefaultValues":"0"
 },
 { "Name":"RULE_ARRAY",
 "Position":10,
 "DefaultValues":"INITIAL, TOKEN"
 }
]
 }
Chapter 5. Creating a cryptographic inventory 81

5.4 Using IBM Crypto Analytics Tool

The IBM CAT provides a graphical interface that is used to search, display, and analyze data
that is extracted from the different cryptographic components. The findings are presented in
generated reports.

IBM CAT also can apply a set of policy rules that can be used to analyze the extracted data
and flag whether the objects are compliant or noncompliant according to the policy rules
(such as reporting non-quantum-safe keys).

5.4.1 IBM CAT overview

IBM CAT features the following components (see Figure 5-6):

� A data collection for z/OS that consists of load modules and compiled REXX execs to
extract cryptographic and security-related information from z/OS systems. The extracted
data is loaded into the IBM Crypto Analytics Tool DB2® database and provides
“snapshots”.

� The Crypto Analytics Tool client is a workstation program that accesses the Crypto
Analytics Tool database by using a JDBC connection to generate the reports.

Figure 5-6 CAT architectural overview
82 Transitioning to Quantum-Safe Cryptography on IBM Z

5.4.2 Reported elements

Whenever you are running the z/OS data collection, the Db2 tables are populated with the
results of the data collection, called snapshots. The following elements are reported by CAT in
the snapshots:

� ICSF configuration

The ICSF configuration report provides basic information about the ICSF status at the time
of the snapshot (sysplex mode, initialization status, CKDS format, and so on). The report
also provides the status of runtime options (such as special secure mode and PCF
coexistence), the ICSF policies, exit routines, and UDX services.

� Protected verbs and utilities

The protected verbs and utilities report lists all the ICSF services and extracts from RACF
the profiles that are protecting these services along with the access list to the profiles.

� Crypto Express

This report provides a list of adapters that are assigned to the LPAR where the snapshot
was taken, along with the status of the master keys. The report also provides the access
points (ACPs) setup.

� Key data sets (xKDS)

The Key data sets report provides the name of the xKDS along with the status of their
RACF protection. It also includes the Masters Keys verification patterns.

� Keys

For each type of key (DES, RSA, AES, and so), this report lists all the keys (with a search
option) and their type, size, metadata, and so on. For each key, their RACF protection
profiles can be displayed along with the options for the ICSF segment, such as
SYMCPACFWRAP.

� RACF

The RACF report provides the list of all the RACF profiles in the classes that are related to
cryptography, such as CRYPTOZ and CSFSERV. The report also provides the list of users
and groups with access to these profiles, along with the certificates and key rings that are
present in RACF.

5.4.3 Monitoring functions

CAT provides the following monitoring functions:

� Queries

In CAT Monitor, predefined queries can be performed. Two types of queries are available:
Queries that compare two selected snapshots, and queries that generate a report for a
selected snapshot.

For example, by using the comparison function, the comparison report highlights the new
keys that are found in the keystore if you compare two different snapshots after a key
generation event.

� Policy check

With the policy check, set of policy rules can be specified that can be used to analyze the
extracted data and flag whether the objects are compliant or noncompliant according to
the policy rules. The set of policy rules can be tailored according to your own policy.
Chapter 5. Creating a cryptographic inventory 83

5.4.4 Crypto Analytics Tool use case

In this use case, we see how you can use CAT to generate a policy report to identify
non-Quantum-safe keys in your ICSF keystore. For example, analyzing our AES keys that are
stored in the ICSF CKDS and report any anomaly, such as a weaker AES 128 key.

For this example, it is assumed that the CAT z/OS data collection component is installed and
that the data collection is run at a regular interval.

The CAT Monitor was installed on a workstation, the JDBC license was copied into the
<CATMonitor>\configuration\license directory, and the Db2 connection information is
provided.

First, we activate the default policy, verify the content of the policy for AES keys and then,
apply it to our AES 256 keys.

5.4.5 Activating the policy

We enable the built-in Policy. On the workstation where CAT is installed by selecting
Window → Preferences.

By default, the built-in policy is not activated. To activate it, select the policy and click Set
Active and then, Apply (see Figure 5-7).

Figure 5-7 CAT Policy Activation

84 Transitioning to Quantum-Safe Cryptography on IBM Z

5.4.6 Checking the policy

To verify the content of the policy, select the policy and then, click Edit.

The policy editor is displayed (see Figure 5-8), which includes the name of the policy, a
description, and a tab for each of the cryptographic elements where a policy can be applied.

Figure 5-8 CAT Policy Editor

If we select the AES Keys tab, we can see that the default policy reports any AES128 key that
is created after 2004-01-01, any AES192 key created after 2011-01-01, and so on.
Chapter 5. Creating a cryptographic inventory 85

As shown in Figure 5-9, the policy also reports any keys with identical Key Check Value
(KCV); that is, those key labels have the same key value.

Figure 5-9 AES Key Length Policies

Exit the Preference dialog by clicking Cancel twice.
86 Transitioning to Quantum-Safe Cryptography on IBM Z

5.4.7 Applying the policy to a snapshot

When back in CAT main window, select and expand a snapshot in the Systems Explorer
frame.

In the ICSF section, the types of keys that are present in the key data sets are listed. As
shown in Figure 5-10 on page 87, we right-clicked AES Keys and then, selected Policy →
Verify AES Keys.

Figure 5-10 Running the AES Key Policy

The Policy Check report is displayed. In Figure 5-11, the Policy Check Report is highlighting
that some noncompliant AES keys were found in our keystore.

Figure 5-11 CAT Monitor AES Policy Check Report
Chapter 5. Creating a cryptographic inventory 87

By clicking the highlighted policy exception, the list of keys (see Figure 5-12) shows that only
one was found as not compliant in the policy check report. When selecting each key, details
about the key and the associated metadata are displayed.

Figure 5-12 AES non-policy-compliant keys display

88 Transitioning to Quantum-Safe Cryptography on IBM Z

5.5 Using IBM z/OS Encryption Readiness Technology

IBM zERT is a communications server feature that provides information about the
cryptographic network protection state of TCP/IP and Enterprise Extender connections that
end on a z/OS system. It also reports their usage in SMF records.

With IBM zERT Network Analyzer (see Figure 5-13), a web-based GUI runs under z/OSMF.
z/OS network security administrators can analyze and report on the data that is reported in
zERT Summary records (SMF type 119 subtype 12).

Figure 5-13 zERT Process

With z/OS 2.5 and zERT Policy Enforcement, you can define required network security policy,
including the encryption algorithm in use and then, direct the TCP/IP stack to take specific
actions for connections that do not meet that defined policy through the policy agent
(PAGENT).

5.5.1 Enabling zERT for zERT Network Analyzer

To generate the zERT summary records, the following parameters are required in the TCP/IP
configuration profile:

� ZERT AGGREGRATION in the GLOBALCONFIG section
� TYPE119 ZERTSUMMARY in the SMFCONFIG section

Also, the z/OS SMF configuration parmlib member should enable the collection of the SMF
type 119 records.

Note: At least Db2 for z/OS V11 is required as the database repository for IBM zERT
Network Analyzer.
Chapter 5. Creating a cryptographic inventory 89

5.5.2 Using IBM zERT Network Analyzer

In this section, we demonstrate how zERT network analyzer can be used during the
cryptographic inventory step to provide encryption algorithms data for z/OS Communications
Server.

Configuration tasks overview
Before IBM zERT Network Analyzer is used, the following configuration tasks are required:

� Authorize the user IDs to use the IBM zERT Network Analyzer (see
SYS1.SAMPLIB(IZUNASEC).

� Work with your Db2 for z/OS database administrators to create the Db2 database objects
and connect IBM zERT Network Analyzer to the Db2 database.

Populating IBM zERT Network Analyzer database
To perform this task, you need cataloged SMF dump data sets with the SMF record type 119
and subtype 12, zERT aggregation records. The z/OSMF task (usually user IZUSVR) must be
authorized to read the SMF dump data sets.

Complete the following steps:

1. In the main IBM zERT Network Analyzer page, select Data Management → Import SMF
Data → Add data set. Add all the required SMF dumps data sets.

2. Select all of the data sets that you want to import in the database and then, click Import
Selected. Then, confirm that you want to import the selected data sets (see Figure 5-14).

Figure 5-14 IBM zERT Network Analyzer Import SMD Data

90 Transitioning to Quantum-Safe Cryptography on IBM Z

The import operation is asynchronous, and the completion of the import can be checked in
the Data Management History window by reviewing the Status column (see Figure 5-15). The
task can be selected to expand to a detailed view of the import operation (number of records
added, duplicate, and ignored).

Figure 5-15 IBM zERT Network Analyzer SMF import details

Building your first query
Now that the SMF data is imported into the Db2 database, you can build your first query.
Complete the following steps:

1. In the main IBM zERT Network Analyzer page (see Figure 5-16), select Queries → New
query. Here, you must provide a query name and (optionally) a description for the query.

Figure 5-16 IBM zERT Network Analyzer creating a new query

By default, the query retrieves all available SMF records, and reports on all of the data that
is available in the Db2 database.

Chapter 5. Creating a cryptographic inventory 91

However, to limit the output of the query and select more valuable information, you can
add a scope filter. This filter can limit the output to a specific data range (such a, the last
30 days), the sysplex/systems/TCP/IP stack, the TCP or Enterprise Extender IP, ports,
and client IP (see Figure 5-17).

Figure 5-17 IBM zERT Network Analyzer query scope filter

You can limit the output of the query by selecting Security Filters. In the Security filter
window, you can limit the output of the query to specific security traffic (unprotected,
IPsec, TLS, and SSH). Within a security traffic, such as TLS, you can limit the output to
specific algorithms (see Figure 5-18).

Figure 5-18 IBM zERT Network Analyzer Security session filters

2. After your query definition is complete, click Save and run query. After confirmation, the
query runs and the result is available in the Report window.

92 Transitioning to Quantum-Safe Cryptography on IBM Z

Viewing the query result
The query results are available in the Report window (see Figure 5-19).

Figure 5-19 IBM zERT Network Analyzer query result

The query result features one summary line, with the Sysplex, System, Stack, and Server IP
along with the ports, jobname, and summary information about the type of session that was
reported (unprotected, IPsec, SSH, and TLS).

You can expand the results, and get more information by clicking the query result line.

IBM zERT Network Analyzer shows the list of Clients IP along with another summary of the
sessions. You can get more information about the sessions for a specific client or all the
clients by selecting the IP addresses that you want to analyze and then, clicking View
security session details (see Figure 5-20).

Figure 5-20 IBM zERT Network Analyzer client details

The report displays (see Figure 5-21). For each client IP selected, the details about the
security are provided (Protocol version, Key Exchange Algorithm, and so on).

Figure 5-21 IBM zERT Network Analyzer security session details

Chapter 5. Creating a cryptographic inventory 93

All the query results are exportable, and can be used in spreadsheet by clicking Export to
CSV.

Creating your own data-in-transit cryptographic inventory
From the previous example, we discovered that we can create specific targeted reports about
specific types of security sessions and algorithms by using the IBM zERT Network Analyzer.

Then, you can build a cryptographic inventory for your data-in-transit, with specific attributes,
such as the clients/servers you are targeting, the protocols or cryptographic algorithms (which
is useful to prepare a transition for specific applications/client-servers in the enterprise).

5.5.3 Monitoring data in-transit by using zERT

With z/OS 2.5, a feature called zERT Enforcement Policy was introduced. With this feature,
you can now define a policy with filters that is based on addresses, ports, jobname,
encryption algorithm, and ciphers. Then, you can take actions if the connection is not “in
policy”. The actions can be logging only (SMF, syslogd, and console) or resetting the TCP/IP
connection. The policy is enforced by the Policy Agent address space (PAGENT).

Creating a policy
To create a zERT Enforcement Policy, it is recommended to use, the z/OSMF Network
Configuration assistant (see Figure 5-22) as is done with the others policy agent-based
policies (such as AT/TLS and IPsec).

Figure 5-22 Main page of z/OS Configuration Assistant

In the policy, you can define multiple criteria that the connection needs match to trigger the
policy. Then, in the actions, you define what occurs if such connection is established.

For example, you can reset a nonsecure connection and disconnect the client so that no
information transits in this nonsecure connection.

94 Transitioning to Quantum-Safe Cryptography on IBM Z

In our environment, TN3270clear connection requests coming from IP address 10.0.0.111
are not permitted (see Figure 5-23). Therefore, the client immediately disconnects after
reporting the information in the z/OS log.

Figure 5-23 zERT Rule information

After activating the policy through the policy agent, we can see in the PAGENT log (refer to
Example 5-8) that message EZZ8771I is issued. We also see that the TN3270 client with an
IP address of 10.0.0.111 starts a nonsecure connection, which is immediately reported and
disconnected through a reset of the connection (message EZZ8562I).

Example 5-8 PAGENT Log

EZZ8771I PAGENT CONFIG POLICY PROCESSING COMPLETE FOR TCPIP : TTLS
EZZ8771I PAGENT CONFIG POLICY PROCESSING COMPLETE FOR TCPIP : ZERT
EZD1289I TCPIP ICSF SERVICES ARE CURRENTLY AVAILABLE FOR AT-TLS GROUP
AZFGroupAction1
EZZ6035I TN3270 DEBUG CONN DETAIL 373
 IP..PORT: 10.0.0.111..53854
 CONN: 000056FA LU: SYSZTCP8 MOD: EZBTTRCV
 RCODE: 1001-01 Client disconnected from the connection.
 PARM1: 00000000 PARM2: 00000000 PARM3: 00000000
EZZ6034I TN3270 CONN 000056FA LU SYSZTCP8 SESS DROP CLNTDISC 374
 IP..PORT: 10.0.0.111..53854
IKT100I USERID CANCELED DUE TO UNCONDITIONAL LOGOFF
IKT122I IPADDR..PORT 10.0.0.111..53854
EZZ6034I TN3270 CONN 000056FA LU SYSZTCP8 CONN DROP CLNTDISC 376
 IP..PORT: 10.0.0.111..53854
EZZ6034I TN3270 CONN 0000571C LU **N/A** ACCEPTED 23 378
 IP..PORT: 10.0.0.111..55623
EZZ8562I CONN RESET BY ZERT POLICY 379
EZZ8552I STACK= TCPIP CONNID= 0000571C CONNDIR= INBOUND
EZZ8553I LOCALIPADDR= 10.0.0.216 LOCALPORT= 23
EZZ8554I REMOTEIPADDR= 10.0.0.111 REMOTEPORT= 55623
EZZ8555I TRANSPROTO= TCP JOBNAME= TN3270 USERID= TCPIP
EZZ8556I SECPROTO= NONE SECPROTOVERSION= N/A
EZZ8560I RULE= TN3270clear
EZZ8561I ACTION= Reset__Console
Chapter 5. Creating a cryptographic inventory 95

This example shows a simple policy, but during your quantum-safe journey, you can define
rules that are based on these encryption algorithms to prevent (or report real-time)
connections that use non-quantum-safe encryption algorithms.
96 Transitioning to Quantum-Safe Cryptography on IBM Z

Chapter 6. Deploying quantum-safe
capabilities

Now that your cryptographic inventory is created (as discussed in Chapter 5, “Creating a
cryptographic inventory” on page 71), the preparation and planning can begin for the
replacement of weak symmetric keys and public key algorithms. The algorithms and protocols
at risk are discussed in “Cryptographic vulnerabilities possible with quantum computers” on
page 9.

Adopting and implementing agreed upon quantum-safe standards, algorithms, and protocols
in cryptographic systems helps protect against quantum computer and conventional
computer attacks.

This chapter includes the following topics:

� 6.1, “Quantum-safe algorithm artifacts” on page 98
� 6.2, “Converting your PKDS to KDSRL format” on page 99
� 6.3, “Ensuring the environment is ready” on page 101
� 6.4, “Quantum-safe key generation” on page 102
� 6.5, “Quantum-safe encryption” on page 105
� 6.6, “Quantum-safe digital signatures” on page 107
� 6.7, “Quantum-safe hybrid key exchange” on page 113
� 6.8, “Quantum-safe hashing” on page 117
� 6.9, “Validating your quantum-safe transition” on page 118

6

© Copyright IBM Corp. 2022. 97

6.1 Quantum-safe algorithm artifacts

As you transition your cryptographic infrastructure to quantum-safe algorithms, it is important
to understand some of the differences in artifact sizes between quantum-safe algorithms and
traditional public key cryptography. It also is important to understand the supported
quantum-safe algorithm object identifiers.

Quantum-safe algorithm (QSA) keys and signatures are much larger and might require
changes in your environment. CCA QSA, RSA, and Elliptic Curve Cryptography (ECC) keys
are compared in Table 6-1. The token size does not include other sections (such as private
key name). The PKCS #11 key objects and signatures are of comparable size to the CCA key
tokens.

Table 6-1 CCA public key token and signature sizes

The supported quantum-safe algorithm object identifiers (OIDs) on IBM z15 and IBM z16 with
Crypto Express7S and Crypto Express8S features are listed in Table 6-2.

Table 6-2 Supported quantum-safe algorithm object identifiers

For more information about the supported quantum-safe OIDs, see ICSF Application
Programmer's Guide, SC14-7508.

For more information about each quantum-safe algorithm, see the following web pages:

� CRYSTALS-Dilithium
� CRYSTALS-Kyber

Algorithm Public key token
size (bytes)

Private key token size
(bytes)

Signature size
(bytes)

RSA CRT 4096 1104 2504 512

ECC Edwards 448 79 323 114

CRYSTALS-Dilithium 6,5
Round 3

1984 6128 3293

CRYSTALS-Dilithium 8,7
Round 3

2624 7632 4595

Algorithm Algorithm strength/versiona

a. Crypto Express7S features support CRYSTALS-Dilithium 6,5 Round 2 only

Object identifier

CRYSTALS-Dilithium CRYSTALS-Dilithium 6,5 Round 2 1.3.6.1.4.1.2.267.1.6.5

CRYSTALS-Dilithium 6,5 Round 3 1.3.6.1.4.1.2.267.7.6.5

CRYSTALS-Dilithium 8,7 Round 2 1.3.6.1.4.1.2.267.1.8.7

CRYSTALS-Dilithium 8,7 Round 3 1.3.6.1.4.1.2.267.7.8.7

CRYSTALS-Kyber CRYSTALS-Kyber 1024 Round 2 1.3.6.1.4.1.2.267.5.4.4
98 Transitioning to Quantum-Safe Cryptography on IBM Z

https://pq-crystals.org/dilithium/index.shtml
https://pq-crystals.org/dilithium/index.shtml
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/kyber/index.shtml

6.2 Converting your PKDS to KDSRL format

If you plan to store CCA QSA key tokens in your ICSF Public Key Data Set (PKDS), you must
be on ICSF FMID HCR77D2 and have a large common record format (KDSRL) PKDS.
KDSRL format supports all asymmetric key tokens and metadata. It also allows key usage
tracking, if configured. KDSRL format increases the logical record length (LRECL) of the
PKDS 3800 to 32756.

ICSF provides a utility to convert a KDSR format PKDS to KDSRL format by using the ICSF
panes.

Complete the following steps to convert a PKDS to KDSRL format by using the ICSF panes:

1. On the ICSF Primary menu (see Example 6-1), select option 2, KDS MANAGEMENT and
then, press Enter.

Example 6-1 ICSF Primary menu

HCR77D2 -------------- Integrated Cryptographic
 System Name: SY1 Crypto Domain: 0
 Enter the number of the desired option.

 1 COPROCESSOR MGMT - Management of Cryptographic Coprocessors
 2 KDS MANAGEMENT - Master key set or change, KDS Processing
 3 OPSTAT - Installation options
 4 ADMINCNTL - Administrative Control Functions
 5 UTILITY - ICSF Utilities
 6 PPINIT - Pass Phrase Master Key/KDS Initialization
 7 TKE - TKE PKA Direct Key Load
 8 KGUP - Key Generator Utility processes
 9 UDX MGMT - Management of User Defined Extensions

 Licensed Materials - Property of IBM
 5650-ZOS Copyright IBM Corp. 1989, 2021.
 US Government Users Restricted Rights - Use, duplication or
 disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Press ENTER to go to the selected option.
 Press END to exit to the previous menu.
 OPTION ===>

2. On the Key Data Set Management pane (see Example 6-2), select option 2, PKDS
MANAGEMENT and then, press Enter.

Example 6-2 ICSF key data set management

------------------------ ICSF - Key Data Set Management ------------

 Enter the number of the desired option.

 1 CKDS MANAGEMENT - Perform Cryptographic Key Data Set (CKDS)
 functions including master key management
 2 PKDS MANAGEMENT - Perform Public Key Data Set (PKDS)
 functions including master key management
 3 TKDS MANAGEMENT - Perform PKCS #11 Token Data Set (TKDS)
 functions including master key management
 4 SET MK - Set master keys
Chapter 6. Deploying quantum-safe capabilities 99

 Press ENTER to go to the selected option.
 Press END to exit to the previous menu.

3. On the PKDS Management pane (see Example 6-3), select option 6, COORDINATED
PKDS CONVERSION and then, press Enter.

Example 6-3 PKDS Management

---------------------------- ICSF - PKDS Management --------------------------

 Enter the number of the desired option.

 1 PKDS OPERATIONS - Initialize a PKDS, activate a different PKDS,
 (Refresh), or update the header of a PKDS and make
 it active
 2 REENCIPHER PKDS - Reencipher the PKDS
 3 CHANGE ASYM MK - Change an asymmetric master key and activate the
 reenciphered PKDS
 4 COORDINATED PKDS REFRESH - Perform a coordinated PKDS refresh
 5 COORDINATED PKDS CHANGE MK - Perform a coordinated PKDS change master key
 6 COORDINATED PKDS CONVERSION - Convert the PKDS to KDSR/L record format
 7 PKDS KEY CHECK - Check key tokens in the active PKDS for format errors

 Press ENTER to go to the selected option.
 Press END to exit to the previous menu.

4. On the Coordinated KDS conversion pane (see Example 6-4), enter the new KDS name
and then, press Enter.

Example 6-4 Coordinated KDS conversion

---------------------- ICSF - Coordinated KDS conversion -----------------

 To perform a coordinated KDS conversion, enter the KDS names below
 and optionally select the rename option.

 KDS Type ===> PKDS

 Active KDS ===> ‘SYS1.PKDS.KDSR’

 New KDS ===> ‘SYS1.PKDS.KDSRL’

 Rename Active to Archived and New to Active (Y/N) ===> N

 Archived KDS ===>

 Create a backup of the converted KDS (Y/N) ===> N

 Backup KDS ===>

 Press ENTER to perform a coordinated KDS conversion.
 Press END to exit to the previous menu.
100 Transitioning to Quantum-Safe Cryptography on IBM Z

After converting your PKDS to KDSRL format, you can confirm the change by using the
D ICSF,KDS command. The output is shown in Example 6-5.

Example 6-5 D ICSF, KDS output

SY1 d icsf,kds
 SY1 CSFM668I 14.28.13 ICSF KDS 875
 CKDS SYS1.CKDS.KDSR
 FORMAT=KDSR COMM LVL=3 SYSPLEX=Y MKVPs=DES AES
 DES MKVP date=Unknown
 AES MKVP date=Unknown
 PKDS SYS1.PKDS.KDSRL
 FORMAT=KDSRL COMM LVL=3 SYSPLEX=Y MKVPs=RSA ECC
 RSA MKVP date=Unknown
 ECC MKVP date=Unknown
 TKDS SYS1.TKDS.KDSRL
 FORMAT=KDSRL COMM LVL=3 SYSPLEX=Y MKVPs=P11
 P11 MKVP date=Unknown

6.3 Ensuring the environment is ready

The examples in the subsequent sections assume that all the necessary hardware and
software is installed. Review the information in this section before deploying the quantum-safe
capabilities.

The following general prerequisites must be met:

� ICSF FMID HCR77D2 or later is installed with the latest service level
� z/OS 2.5 or later is installed
� Running on IBM z15 or later
� Crypto Express7S or later is installed and configured
� CPACF feature code 3863 is enabled

For the CCA examples, our environment featured the following components:

� z/OS 2.5 installed and running on an IBM z16.

� ICSF FMID HCR77D2 with the latest service level applied.

� The CKDS and PKDS are allocated and in the correct format:

– The CKDS is recommended to be in KDSRL format.

– The PKDS must be in KDSRL format. For more information, see “Converting your
PKDS to KDSRL format” on page 99.

� Two Crypto Express8S (CEX8C) were installed and configured as CCA coprocessors (for
more information, see IBM z16 Configuration Setup, SG24-8960).

� Feature Code (FC) 3863 was enabled for CPACF use.

� The AES master key was set and active in each CEX8C (CCA coprocessor) and initialized
in the CKDS header. The Master Key Verification Pattern must be the same across your
environment.

If you are converting ciphertext that is encrypted with secure CCA DES keys, you must
have the DES master key set and active in each CEX8C coprocessor and initialized in the
CKDS header. The Master Key Verification Pattern must be the same across your
environment.
Chapter 6. Deploying quantum-safe capabilities 101

CCA CRYSTALS-Dilithium and CRYSTALS-Kyber key operations require that the ECC
master key be set and active in each CEX8C coprocessor and initialized in the PKDS
header. The Master Key Verification Pattern must be the same across your environment.

For the PKCS #11 examples, we made the following changes to our environment:

� The TKDS was allocated. A TKDS is not required if session objects are used.

� For secure key operations:

– Two Crypto Express8 (CEX8P) were installed and configured as Enterprise PKCS #11
(EP11) coprocessor.

– The EP11 master key was set and active in each CEX8P and initialized in the TKDS
header. The Master Key Verification Pattern must be the same across your
environment. A TKE is required to set the EP11 master key.

For more information about allocating ICSF Key Data Sets and entering and activating ICSF
master keys, see z/OS ICSF Administrator’s Guide, z/OS, SC14-7506.

For more information about the IBM Z cryptographic stack, see 4.1, “IBM Z cryptographic
components overview” on page 48.

6.4 Quantum-safe key generation

This section describes generating cover keys for AES 256, CRYSTALS-Dilithium, and
CRYSTALS-Kyber algorithms by using ICSF services.

AES 256, CRYSTALS-Dilithium, and CRYSTALS-Kyber are proven to be resistant to attacks
from a powerful quantum computer. They also are ideal candidates when transitioning your
application that is identified in your cryptographic inventory.

The PKCS #11 sample assumes that your environment is running with a specified ICSF
TKDS. For more information about allocating and initializing a TKDS, see ICSF System’s
Programmer’s Guide, SC14-7507.

6.4.1 Generating an AES 256-bit key by using ICSF CCA services

Generating a secure AES 256-bit CIPHER CCA key token can be done by using the Key
Token Build2 (CSNBKTB2 and CSNEKTB2) and Key Generate2 (CSNBKGN2 and
CSNEKGN2) ICSF services.

To generate a CCA AES 256-bit key, complete the following steps:

1. Build a skeleton token by using CSNBKTB2 with the correct key usage and key
management bits specified. Ensure key type CIPHER is specified.

2. Pass the created skeleton token from CSNBKTB2 to CSNBKGN2 and specify the AES
and OP rules.

The secure AES 256-bit CCA key token is generated and can be written to the CKDS with the
CKDS Key Record Create2 (CSNBKRC2 and CSNEKRC2) service.

For more information about a sample REXX program that showcases steps 1 and 2, see B.1,
“CCA AES 256-bit key generation REXX sample” on page 134.

Note: PKCS #11 hybrid key-exchange can be done in hardware only.
102 Transitioning to Quantum-Safe Cryptography on IBM Z

For more information about these services and parameters, see ICSF Application
Programmer’s Guide, SC14-7508.

6.4.2 Generating an AES 256-bit key by using ICSF PKCS #11 services

Generating a secure AES 256-bit PKCS #11 key object can be done by using the PKCS #11
Generate Secret Key (CSFPGSK and CSFPGSK6) ICSF service.

To generate a secure PKCS #11 AES 256-bit key, complete the following steps:

1. Initialize a PKCS #11 token by using the PKCS #11 Token Record Create (CSFPTRC and
CSFPTRC6) service.

2. Call the CSFPGSK service that passes the token handle that was created in step 1.
Specify the CKA_CLASS (with a value of CKO_SECRET_KEY) and CKA_KEY_TYPE
(with a value of CKK_AES) object attributes in the attribute list.

For more information about contains a sample REXX program that showcases step 2, see
B.2, “PKCS #11 AES 256-bit key generation REXX sample” on page 137.

For more information about key object attributes, see ICSF Writing PKCS #11 Applications
guide, SC14-7510.

6.4.3 Generating CRYSTALS-Dilithium key by using ICSF CCA services

Generating a secure CRYSTALS-Dilithium key pair can be done by using the PKA Key Token
Build (CSNDPKB and CSNFPKB) and PKA Key Generate (CSNDPKG and CSNFPKG) ICSF
services.

To generate a CRYSTALS-Dilithium key pair, complete the following steps:

1. Build a skeleton token by using CSNDPKB passing the ‘QSA-PAIR’ and ‘U-DIGSIG’ rules.
In the Key Value Structure (KVS), specify the algorithm ID and algorithm parameters for
CRYSTALS-Dilithium.

2. Pass the created skeleton token from CSNDPKB to CSNDPKG and specify the ‘MASTER’
rule.

The secure CRYSTALS-Dilithium key pair is generated and can be written to the PKDS with
the PKDS Key Record Create (CSNDKRC and CSNFKRC) service if the PKDS is in KDSRL
format. For more information, see 6.2, “Converting your PKDS to KDSRL format” on page 99.

The CRYSTALS-Dilithium public key optionally can be extracted from the private key token by
using the PKA Public Key Extract (CSNDPKX and CSNFPKX) service.

For more information about a sample REXX program that showcases steps 1 and 2, see B.3,
“CCA CRYSTALS-Dilithium key pair generation REXX sample” on page 139.

For more information about these services and parameters, see ICSF Application
Programmer’s Guide, SC14-7508.
Chapter 6. Deploying quantum-safe capabilities 103

6.4.4 Generating CRYSTALS-Dilithium key by using ICSF PKCS #11 services

Generating a secure PKCS #11 CRYSTALS-Dilithium key object can be done by using the
PKCS #11 Generate Key Pair (CSFPGKP and CSFPGKP6) ICSF service.

To generate a secure PKCS #11 CRYSTALS-Dilithium key object, complete the following
steps:

1. Initialize a PKCS #11 token by using the PKCS #11 Token Record Create (CSFPTRC and
CSFPTRC6) service.

2. Call the CSFPGKP service that passes the token handle that was created from step 1.
Specify the CKA_IBM_DILITHIUM_MODE object attribute with the DER encoded OID that
corresponds to the CRYSTALS-Dilithium strength that is wanted in the public key attribute
list.

For more information about a sample REXX program that showcases step 2, see B.4, “PKCS
#11 CRYSTALS-Dilithium key pair generation REXX sample” on page 142.

For more information about key object attributes, see ICSF Writing PKCS #11 Applications
Guide, SC14-7510.

6.4.5 Generating CRYSTALS-Kyber key by using ICSF CCA services

Generating a secure CRYSTALS-Kyber key pair can be done by using the PKA Key Token
Build (CSNDPKB and CSNFPKB) and PKA Key Generate (CSNDPKG and CSNFPKG) ICSF
services.

To generate a CRYSTALS-Kyber key pair, complete the following steps:

1. Build a skeleton token by using CSNDPKB passing the QSA-PAIR, U-KEYENC, and
U-DATENC rules. In the Key Value Structure (KVS), specify the algorithm ID and algorithm
parameter for CRYSTALS-Kyber.

2. Pass the created skeleton token from CSNDPKB to CSNDPKG and specify the MASTER
rule.

The secure CRYSTALS-Kyber key pair is generated and can be written to the PKDS with the
PKDS Key Record Create (CSNDKRC and CSNFKRC) service if the PKDS is in KDSRL
format. For more information, see 1.2: Converting your PKDS to KDSRL format.

The CRYSTALS-Kyber public key optionally can be extracted from the private key token by
using the PKA Public Key Extract (CSNDPKX and CSNFPKX) service.

For more information about a sample REXX program that showcases steps 1 and 2, see B.5,
“CCA CRYSTALS-Kyber key pair generation REXX sample” on page 144.

For more information about these services and parameters, see ICSF Application
Programmer’s Guide, SC14-7508.
104 Transitioning to Quantum-Safe Cryptography on IBM Z

6.4.6 Generating CRYSTALS-Kyber key by using ICSF PKCS #11 services

Generating a secure PKCS #11 CRYSTALS-Kyber key object can be done by using the
PKCS #11 Generate Key Pair (CSFPGKP and CSFPGKP6) ICSF service.

To generate a secure PKCS #11 CRYSTALS-Kyber key object, complete the following steps:

1. Initialize a PKCS #11 token by using the PKCS #11 Token Record Create (CSFPTRC and
CSFPTRC6) service.

2. Call the CSFPGKP service that passes the token handle that was created from step 1.
Specify the CKA_IBM_KYBER_MODE object attribute with the DER encoded OID
corresponding to the CRYSTALS-KYBER strength that is wanted in the public key attribute
list.

For more information about a sample REXX program that showcases step 2, see B.6, “PKCS
#11 CRYSTALS-Kyber key pair generation REXX sample” on page 147.

For more information about key object attributes, see ICSF Writing PKCS #11 Applications
Guide, SC14-7510.

6.5 Quantum-safe encryption

Data must be encrypted with AES 256-bit keys to ensure its protection from quantum
computers running Grover’s algorithm. For more information about the effect Grover’s
algorithm has on symmetric key cryptography, see 1.3, “Impact of Shor’s and Grover’s
algorithms” on page 7.

The following options are available to protect ciphertext:

� Translate it by decrypting it by using the original key and then, encrypting it with an AES
256-bit key. The clear text is visible only for a short time within the secure cryptographic
coprocessor.

� Reencrypt the ciphertext by using an AES 256-bit key without decrypting it first.

� Decrypt it with Symmetric Key Decipher (CSNBSYD or CSNBSYD1 and CSNESYD or
CSNESYD1) and reencrypt it with Symmetric Key Encipher (CSNBSYE or CSNBSYE1
and CSNESYE or CSNESYE1). The clear text is visible only for a short time on the host
system.

For more information about generating AES 256-bit keys, see 6.4.1, “Generating an AES
256-bit key by using ICSF CCA services” on page 102.

For more information about the use of AES 256-bit keys to translate cipher text from a weaker
key (such as DES) to AES 256-bit encryption (option 1 in the previous bulleted list), see 6.4.2,
“Generating an AES 256-bit key by using ICSF PKCS #11 services” on page 103.
Chapter 6. Deploying quantum-safe capabilities 105

6.5.1 Translating ciphertext to AES 256-bit encryption by using ICSF CCA
services

Translating ciphertext from a weaker algorithm to AES 256-bit can be done by using the
Cipher Text Translate2 (CSNBCTT2, CSNBCTT3, CSNECTT2, CSNECTT3) ICSF service.

To translate ciphertext to AES 256-bit encryption, complete the following steps:

1. Generate an AES 256-bit CIPHER key by using the ENCRYPT and C-XLATE key usage
bits enabled. For more information, see B.1, “CCA AES 256-bit key generation REXX
sample” on page 134.

2. Call the Cipher Text Translate2 service that passes the key that originally encrypted the
ciphertext as the key_identifier_in and the new AES 256-bit key as the key_identifier_out.

The ciphertext is decrypted within the secure cryptographic coprocessor and reencrypted
with the AES 256-bit key.

For more information about a sample REXX program that showcases step 2, see C.1, “CCA
ciphertext translation REXX sample” on page 152.

For more information about these services and parameters, see ICSF Application
Programmer’s Guide, SC14-7508.

6.5.2 Translating ciphertext to AES 256-bit encryption by using ICSF PKCS
#11 services

Translating ciphertext from a weaker algorithm to AES 256-bit can be done by using the
PKCS #11 Secret Key Reencrypt (CSFPSKR and CSFPSKR6) ICSF service.

To translate ciphertext over to AES 256-bit encryption, complete the following steps:

1. Generate an AES 256-bit PKCS #11 key object by using the CKA_IBM_SECURE key
attribute set to TRUE. For more information, see B.2, “PKCS #11 AES 256-bit key
generation REXX sample” on page 137.

2. Call the PKCS #11 Secret Key Reencrypt service that passes the key handle that
originally encrypted the ciphertext as the decrypt_handle and the new AES 256-bit key
handle as the encrypt_handle.

The ciphertext is decrypted within the secure cryptographic coprocessor and reencrypted
with the AES 256-bit key.

For more information about a sample REXX program that showcases step 2, see C.2, “PKCS
#11 ciphertext translation REXX sample” on page 154.

For for more information about these services and parameters, see ICSF Application
Programmer’s Guide, SC14-7508.

Note: This translate ciphertext service supports secure secret keys only.
106 Transitioning to Quantum-Safe Cryptography on IBM Z

6.6 Quantum-safe digital signatures

Digital signatures are used to validate the authenticity and integrity of a message. Digital
signatures also add nonrepudiation, which provides indisputable proof of origin for the signed
data.

Traditional public key cryptography, such as RSA and ECC, are compromised of a sufficiently
powerful quantum computer that is running Shor’s algorithm. This process can lead to issues,
such as data history manipulation by forging digital signatures. To protect against such
issues, it is important to start adopting hybrid signature schemes that combine traditional
public key cryptography and quantum-safe algorithms, such as CRYSTALS-Dilithium.

For more information about how organizations can use digital signatures to verify the
authenticity of data, see 3.4, “Proof of authorship” on page 42.

This section describes how to digitally sign and verify data by using the CRYSTALS-Dilithium
quantum-safe algorithm.

6.6.1 Generating and verifying CRYSTALS-Dilithium digital signature by using
ICSF CCA services

To generate and verify a CRYSTALS-Dilithium digital signature, use the Digital Signature
Generate (CSNDDSG and CSNFDSG) and Digital Signature Verify (CSNDDSV and
CSNFDSV) ICSF services.

To generate a CRYSTALS-Dilithium signature, complete the following steps:

1. Generate a CRYSTALS-Dilithium CCA key token by using the CSNDPKB and CSNDPKG
ICSF services. For more information, see 6.4.3, “Generating CRYSTALS-Dilithium key by
using ICSF CCA services” on page 103.

2. Call the CSNDDSG service and specify the CRDL-DSA, MESSAGE, and CRDLHASH
rules. Pass the CRYSTALS-Dilithium private key token that was generated in step 1.

With a Crypto Express8 CCA coprocessor, the message to be signed can be up to
15000 bytes.

The generated signature is created. The signature size depends on the strength of the
specified CRYSTALS-Dilithium key.

To verify a CRYSTALS-Dilithium signature, complete the following steps:

1. Call the PKA Public Key Extract (CSNDPKX and CSNFPKX) service to extract the
CRYSTALS-Dilithium public key from the private key token.

2. Call the CSNDDSV service and specify the CRDL-DSA, MESSAGE, and CRDLHASH
rules. Pass the CRYSTALS-Dilithium public key token that was extracted in step 1.

With a Crypto Express8 CCA coprocessor, the message to be verified can be up to
15000 bytes.

You receive a 0/0 return/reason code for a successful verification.

For more information about a sample REXX program that showcases a CRYSTALS-Dilithium
digital signature generation and verification, see D.1, “CCA CRYSTALS-Dilithium digital
signature generation and verification REXX sample” on page 158.
Chapter 6. Deploying quantum-safe capabilities 107

For more information regarding these services and parameters, see ICSF Application
Programmer’s Guide, SC14-7508.

6.6.2 Generating and verifying CRYSTALS-Dilithium digital signature by using
ICSF PKCS #11 services

To generate and verify a CRYSTALS-Dilithium digital signature, use the PKCS #11 Private
Key Sign (CSFPPKS and CSFPPKS6) and PKCS #11 Public Key Verify (CSFPPKV and
CSFPPKV6) ICSF services.

To generate a CRYSTALS-Dilithium signature, complete the following steps:

1. Generate a CRYSTALS-Dilithium PKCS #11 key pair by using the CSFPGKP ICSF
service. Ensure that the private key attribute list contains CKA_SIGN set to TRUE, and the
public key attribute list contains CKA_VERIFY set to TRUE. For more information, see
6.4.4, “Generating CRYSTALS-Dilithium key by using ICSF PKCS #11 services” on
page 104.

2. Call the CSFPPKS service and specify the LI2 rule. Pass the CRYSTALS-Dilithium private
key handle that was generated in step 1.

3. The generated signature is created. The signature size depends on the strength of the
specified CRYSTALS-Dilithium key.

To verify a CRYSTALS-Dilithium signature, perform the following steps call the CSFPPKV
service and specify the LI2 rule. Pass the CRYSTALS-Dilithium public key handle. Pass the
signature to verify and the original message.

A 0/0 return/reason code is returned for a successful verification.

D.2, “PKCS #11 CRYSTALS-Dilithium digital signature generation and verification REXX
sample” on page 161 contains a sample REXX program that showcases a
CRYSTALS-Dilithium digital signature generation and verification.

For more information about these services and parameters, see ICSF Application
Programmer’s Guide, SC14-7508.

6.6.3 Using digital signatures to protect SMF records

SMF records are an important part of the auditability to the z/OS platform. For example, SMF
records can contain important security-related information, such as RACF processing records
(SMF record type 80).

It is important to ensure that these records are never tempered with. SMF digital signature
provides a cryptographic means to verify the integrity of the records when log streams are
used as the recording media.

In this section, we demonstrate how SMF records digital signature is used to sign SMF
records and how to transition to quantum-safe algorithms for that purpose.

Configuring SMF digital signature
An SMF digital signature is based on a token and a key (RSA or ECC). The digital signature
can be the same for all the records or specific to a log stream.
108 Transitioning to Quantum-Safe Cryptography on IBM Z

Step 1: Creating the token and the associated key pair
We created a PKCS#11 token that is called QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1. Then, we
created a key pair that we bound to this certificate (see Example 6-6).

Example 6-6 Creating and binding a PKCS#11 token and a key pair (RSA)

RACDCERT ADDTOKEN(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1)
RACDCERT GENCERT ID(STCID) SUBJECTSDN(CN('SMF sign cert')) +
WITHLABEL('SMF sign certificate') SIZE(2048) RSA +
NOTAFTER(DATE(2023/04/18))
RACDCERT BIND(ID(STCID) LABEL('SMF sign certificate') DEFAULT +
TOKEN(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1)

Step 2: Configuring SMF for digital signature
Example 6-7 shows an SMFPRMxx parmlib member (truncated), which enables SMF digital
signature for a log stream IFASMF.ALLSYS.DATA that stores selected z/OS SMF records.
Other SMF records that are directed to the default log stream IFASMF.ALLSYS.DEFAULT do
not have SMF digital signature processing enabled.

Example 6-7 SMFPRMxx parmlib member enabling SMF digital signature for SMF log streams

ACTIVE /*ACTIVE SMF RECORDING*/
LISTDSN /* LIST DATA SET STATUS AT IPL*/
NOPROMPT /*DON'T PROMPT THE OPERATOR */
DEFAULTLSNAME(IFASMF.ALLSYS.DEFAULT,COMPRESS(PERMFIX(32M)))
LSNAME(IFASMF.ALLSYS.DATA,TYPE(0,23,30,42,70:79,80:83,99,113),
 COMPRESS(PERMFIX(64M))
 RECSIGN(HASH(SHA512),SIGNATURE(RSA),
 TOKENNAME(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1))
)
RECORDING(LOGSTREAM)
…

Note that the log stream IFASMF.ALLSYS.DATA must be defined with a MAXBUFSIZE of
65532.

Step 3: Extracting the data from the log stream
When extracting the SMF records from the log streams, we want to ensure that the SMF
digital signature is available for post-processing. For this purpose, the NOSIGSTRIP
parameter must be specified (see Example 6-8).

Example 6-8 JCL for SMF records extraction, preserving SMF digital signature

//IFASMFDL EXEC PGM=IFASMFDL,REGION=0M
//OUTDD1 DD DSN=RBOOK.SMF.LOGS,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(100,100),RLSE),
// DCB=(LRECL=32760,RECFM=VBS,BLKSIZE=0)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 LSNAME(IFASMF.ALLSYS.DATA,OPTIONS(DUMP))
 OUTDD(OUTDD1,TYPE(0:255),START(1400),END(2000))
 NOSIGSTRIP
 DATE(2022096,2022096)
Chapter 6. Deploying quantum-safe capabilities 109

Step 4: Validating the SMF signature
By using the IFASMFDP utility, we can specify the SIGVALIDATE parameter along with the
hashing method and the name of the token. The utility validates the records and ensures that
they are all signed with the specified token (see Example 6-9).

Example 6-9 JCL to create SMF records signing validation

//SMF EXEC PGM=IFASMFDP
//DUMPIN DD DISP=SHR,DSN=RBOOK.SMF.LOGS
//DDSMF1 DD DSN=RBOOK.SMF.RACF,
// DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(100,100),RLSE),
// DCB=(RECFM=VBS,BLKSIZE=32748,LRECL=32756)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 SID(SYSA)
 INDD(DUMPIN,OPTIONS(DUMP))
 OUTDD(DDSMF1,TYPE(30,82))
 NOSIGSTRIP
 DATE(2022096,2022096)
 START(1400) END(1800)
 SIGVALIDATE(HASH(SHA512),
 TOKENNAME(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1))

Sample output from the SMF records signing validation job is shown in Example 6-10.

Example 6-10 SMF records signing validation report

IFA010I SMF DUMP PARAMETERS
IFA010I REPORTOPTS(NOSUBTYPE) -- DEFAULT
IFA010I NOASIGVALIDATE -- DEFAULT
IFA010I SIGVALIDATE(HASH(SHA512),
 TOKENNAME(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1)) -- SYSIN

IFA010I END(1800) -- SYSIN
IFA010I START(1400) -- SYSIN
IFA010I DATE(2022096,2022096) -- SYSIN
IFA010I NOSIGSTRIP -- SYSIN
IFA010I OUTDD(DDSMF1,TYPE(30,82)) -- SYSIN
IFA010I INDD(DUMPIN,OPTIONS(DUMP)) -- SYSIN
IFA010I SID(SYSA) -- SYSIN
IFA020I DDSMF1 -- RBOOK.SMF.RACF
IFA020I DUMPIN -- RBOOK.SMF.LOGS

 SUMMARY ACTIVITY REPORT
 START DATE-TIME 04/06/2022-14:00:00 END DATE-TIME 04/06/2022-19:59:58
 RECORD RECORDS PERCENT AVG. RECORD MIN. RECORD MAX. RECORD RECORDS
 TYPE READ OF TOTAL LENGTH LENGTH LENGTH WRITTEN
 2 5,974 4.35 % 347.85 18 356 447
 3 1 .00 % 18.00 18 18 1
 23 24 .02 % 8,062.00 8,062 8,062 0
 30 20,995 15.29 % 1,529.65 480 6,121 3,244

Tip: You do not have write out records to another data set when performing validation, as
we show in the example. An alternative is to use a dummy data set, by replacing the
DDSMF1 DD statements with DDSMF1 DD DUMMY.
110 Transitioning to Quantum-Safe Cryptography on IBM Z

https://www.ibm.com/docs/en/zos/2.5.0?topic=statement-dummy-parameter
https://www.ibm.com/docs/en/zos/2.5.0?topic=statement-dummy-parameter

 42 5,674 4.13 % 2,473.64 176 32,444 0
 70 1,224 .89 % 20,887.45 1,672 32,600 0
 71 288 .21 % 2,596.00 2,596 2,596 0
 72 13,824 10.06 % 1,791.39 1,324 13,328 0
 73 288 .21 % 29,216.00 29,216 29,216 0
 74 5,616 4.09 % 10,474.92 308 32,520 0
 75 576 .42 % 272.00 272 272 0
 77 288 .21 % 585.25 328 832 0
 78 576 .42 % 6,428.00 4,056 9,008 0
 82 47 .03 % 120.00 120 120 31
 99 75,619 55.06 % 2,877.35 419 8,870 0
 113 6,336 4.61 % 1,606.00 1,462 1,834 0
 TOTAL 137,350 100 % 2,901.58 18 32,600 3,723
 NUMBER OF RECORDS IN ERROR 0

 RECORD VALIDATION REPORT FOR SYSA
 RECORD RECORD VALIDATION VALIDATION START VALIDATION END RECORDS GROUPS INTERVALS
 TYPE SUBTYPE FAILURE DATE-TIME DATE-TIME VALIDATED VALIDATED VALIDATED
 30 2 N 04/06/2022-14:00:00 04/06/2022-18:00:00 2,620 73 48
 30 6 N 04/06/2022-14:00:00 04/06/2022-18:00:00 624 48 48
 30 3 N 04/06/2022-14:00:00 04/06/2022-18:00:00 0 0 48
 30 4 N 04/06/2022-14:00:00 04/06/2022-18:00:00 0 0 48
 30 5 N 04/06/2022-14:00:00 04/06/2022-18:00:00 0 0 48
 82 20 N 04/06/2022-14:00:00 04/06/2022-18:00:00 31 31 48
 VALIDATION SUCCEEDED

Implementing SMF alternative signatures
As described in “Impact of Shor’s and Grover’s algorithms” on page 7, traditional public key
cryptography, such as RSA and ECC, can be compromised by a quantum computer that is
running Shor’s algorithm. To maintain a safe way to validate SMF audit data, you can use a
function that was introduced with z/OS 2.4 that allows a secondary (or alternative) signature
that uses CRYSTALS-Dilithium.

Step 1: Generate the PKCS #11 CRYSTALS-Dilithium key pair

The PKCS #11 CRYSTALS-Dilithium key pair can be clear or secure. For a secure key pair,
an Enterprise PKCS #11 coprocessor Crypto Express7S or later must be available with the
suitable ICSF minimum service level. The minimum hardware and software levels are listed in
Table 4-2 on page 55.

For more information about generating PKCS #11 CRYSTALS-Dilithium key pair services,
see 6.4.4, “Generating CRYSTALS-Dilithium key by using ICSF PKCS #11 services” on
page 104.

Step 2: Configuring SMF for alternative digital signature
Example 6-11 shows an SMFPRMxx parmlib member (truncated) that enables an SMF digital
signature, and alternative digital signature for a log stream that stores z/OS events. The
alternative signature is specified in SMFPRMxx by using the ARECSIGN parameter and the
RECSIGN parameter. When ARECSIGN is used, RECSIGN also must be specified. The
specified TOKENNAME must be the PKCS #11 token that contains the CRYSTALS-Dilithium
key object.

Example 6-11 SMFPRMxx parmlib member that enables SMF digital signature for SMF log streams

ACTIVE /*ACTIVE SMF RECORDING*/

Note: As of this writing, SMF alternative signature support is for CRYSTALS-Dilithium 65
Round 2 only.
Chapter 6. Deploying quantum-safe capabilities 111

LISTDSN /* LIST DATA SET STATUS AT IPL*/
NOPROMPT /*DON'T PROMPT THE OPERATOR */
DEFAULTLSNAME(IFASMF.ALLSYS.DEFAULT,COMPRESS(PERMFIX(32M)))
LSNAME(IFASMF.ALLSYS.DATA,TYPE(0,23,30,42,70:79,80:83,99,113),
 COMPRESS(PERMFIX(64M))
 RECSIGN(HASH(SHA512),SIGNATURE(RSA),
 TOKENNAME(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1))
 ARECSIGN(HASH(SHA512),SIGNATURE(LI2),
 TOKENNAME(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS2))
)
RECORDING(LOGSTREAM)

Step 3: Extracting the data from the log stream
Although the extraction process did not change, we still need to use the NOSIGSTRIP
parameter to preserve the record signatures (see Example 6-12).

Example 6-12 JCL for SMF records extraction, preserving SMF digital signature

//IFASMFDL EXEC PGM=IFASMFDL,REGION=0M
//OUTDD1 DD DSN=RBOOK.SMF.LOGS,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(100,100),RLSE),
// DCB=(LRECL=32760,RECFM=VBS,BLKSIZE=0)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 LSNAME(IFASMF.ALLSYS.DATA,OPTIONS(DUMP))
 OUTDD(OUTDD1,TYPE(0:255),START(1400),END(2000))
 NOSIGSTRIP
 DATE(2022096,2022096)

Step 4: Validating the SMF signature
Here, we want to specify the SIGVALIDATE and ASIGVALIDATE parameters (see
Example 6-13).

Example 6-13 JCL to create SMF records signing validation including alternative signature

//SMF EXEC PGM=IFASMFDP
//DUMPIN DD DISP=SHR,DSN=RBOOK.SMF.LOGS
//DDSMF1 DD DSN=RBOOK.SMF.RACF,
// DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(100,100),RLSE),
// DCB=(RECFM=VBS,BLKSIZE=32748,LRECL=32756)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 SID(SYSA)
 INDD(DUMPIN,OPTIONS(DUMP))
 OUTDD(DDSMF1,TYPE(30,82))
 NOSIGSTRIP
 DATE(2022096,2022096)
 START(1400) END(1800)
 SIGVALIDATE(HASH(SHA512),
 TOKENNAME(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS1))
 ASIGVALIDATE(HASH(SHA512),
 TOKENNAME(QSAFE.REDBOOK.SMF.SIGN.TOKEN.LS2))
112 Transitioning to Quantum-Safe Cryptography on IBM Z

6.7 Quantum-safe hybrid key exchange

Key exchange allows two parties to establish a shared secret by using public key
cryptography.

With the introduction of the CRYSTALS-Kyber algorithm, is it now possible to perform a
quantum-safe hybrid key exchange scheme that combines the protection of traditional Elliptic
Curve Cryptography (ECC) and the quantum-safe CRYSTALS-Kyber algorithm. This hybrid
key exchange scheme provides two layers of protection and ensures that all key exchanges
are protected from attacks by traditional and quantum computers.

For more information about how organizations can use secure key exchange to protect their
sensitive data, see 3.2, “Use case: Sharing keys securely” on page 31.

This section describes how to perform a quantum-safe hybrid key exchange by using CCA
and PKCS #11 services.

6.7.1 Performing a hybrid quantum-safe key exchange scheme by using ICSF
CCA services

A hybrid quantum-safe key exchange can be performed with the PKA Encrypt (CSNDPKE
and CSNFPKE) and EC Diffie-Hellman (CSNDEDH and CSNFEDH) ICSF services.

The following Access Control Points (ACP) must be enabled:

� PKA Encrypt -Allow CRYSTALS-Kyber keys (0083x)
� EC Diffie-Hellman -Allow Hybrid QSA Scheme (035Dx)

Consider the following hybrid quantum-safe key exchange scheme that includes two
participants: Alice and Bob are two parties who want securely exchange information. They
can be a company and a Business Partner, for example.

Step 1: Alice
1. Alice creates the following keys:

– Kyber-priv-A, Kyber-pub-A: CRYSTALS-Kyber 1024 key pair
– EC-priv-A, EC-pub-A: ECC key pair for key agreement
– Kyber-cert-A, EC-cert-A: authentication forms of Kyber-pub-A and EC-pub-A

2. Alice sends Kyber-cert-A and EC-cert-A to Bob.

Step 2: Bob
1. Bob receives and validates Kyber-cert-A and EC-cert-A

2. Bob creates the following keys:

– AES-ciph-B: AES CIPHER key in a CCA key token

– EC-priv-B, EC-pub-B: ECC key pair for key agreement

– EC-cert-B: authenticated form of EC-pub-B

– Kyber-pub-A CCA public key token with public key pulled from Kyber-cert-A

Note: AES-ciph-B must be as strong as the derived shared key (for example,
AES 256-bit) and allow encrypt and decrypt operations.
Chapter 6. Deploying quantum-safe capabilities 113

3. Bob creates the shared key derivation input by using the CSNDPKE service:

– RANDOM keyword, AES-ciph-B, Kyber-pub-A, AES encryption IV

– Generates a random 32B value: rand-32

– AES-CBC encrypts rand-32 by using key AES-ciph-B and the AES encryption IV
returning [AES-ciph-B(rand-32)] in the keyvalue parameter.

– CRYSTALS-Kyber encrypts rand-32 with Kyber-pub-A returning
[Kyber-pub-A(rand-32)] in the PKA_enciphered_keyvalue parameter.

4. Bob completes the shared key derivation by using CSNDEDH

Bob calls CSNDEDH by using a derivation keyword and wanted key length,
[AES-ciph-B(rand-32)], AES-ciph-B, AES encryption IV, EC-priv-B, EC-cert-A, output
skeleton token.

Consider the following points about CSNDEDH:

– Decrypts rand-32 by using the key AES-ciph-B and the AES encryption IV.

– Uses EC-priv-B and EC-cert-A with ECDH to generate the Z value.

– Passes Z and rand-32 to the key derivation function that is indicated by the derivation
keyword, rand-32 is the salt or OtherData. The shared key of the requested length is
derived.

– Places the shared key in the provided output skeleton token and then, encrypts the
key value.

– Returns the final CCA shared key token.

5. Bob stores the shared key

6. Bob sends EC-cert-B, [Kyber-pub-A(rand-32)] to Alice.

Step 3: Alice
1. Alice receives and validates EC-cert-B, [Kyber-pub-A(rand-32)].

2. Alice completes the shared key derivation by using CSNDEDH

Alice calls CSNDEDH with a derivation keyword and the wanted key length, [Kyber-pub-A
(rand-32)], Kyber-priv-A, EC-priv-A, EC-cert-B, output skeleton token.

Consider the following points about CSNDEDH:

– Decrypts rand-32 by using Kyber-priv-A.

– Uses EC-priv-A and EC-cert-B with ECDH to generate the Z value.

– Passes Z and rand-32 to the key derivation function that is indicated by the derivation
keyword, rand-32 is the salt or OtherData. The shared key of the requested length is
derived.

– Places the shared key in the provided output skeleton token and then, encrypts the key
value.

– Returns the final CCA shared key token.

3. Alice stores the shared key.

The shared key is now established by Alice and Bob.
114 Transitioning to Quantum-Safe Cryptography on IBM Z

Role of CSFNDPKE
The role of the PKA Encrypt (CSNDPKE) service in this scheme is to create the rand-32
derivation input and return rand-32 in the following forms:

� Encrypted by Bob’s AES cipher key, AES-ciph-B
� Encrypted by Alice’s CRYSTALS-Kyber public key, Kyber-pub-A

This process is accomplished in one call to CSNDPKE:

� Inputs:

– RANDOM rule-array keyword
– AES-ciph-B: AES-cipher key for Bob

– Kyber-pub-A as PKA_key_identifier: CRYSTALS-Kyber key for Alice

� Outputs:

– keyvalue parameter: [AES-ciph-B(rand-32)]
– PKA_enciphered_keyvalue parameter: [Kyber-pub-A(rand-32)]

Consider the following points:

� Authentication of the public keys that are used in the scheme is the responsibility of the
host.

Currently, CRYSTALS-Kyber keys do not participate in PKI processes. The kyber-cert-A
certificate for a CRYSTALS-Kyber public key recognizes that certificate formats are
needed for the authentication part of a protocol.

For the ECC public keys, the CCA internal PKI can be used for authentication if the trust
anchor was installed in the adapter.

� A full protocol must include a Key Check Value that is calculated over the shared key that
was created by Bob so that Alice can verify the creation of an agreed shared key.

For more information about a REXX sample that shows this end-to-end scheme that uses
ICSF CCA services, see E.1, “CCA hybrid quantum-safe key exchange scheme REXX
sample” on page 166.

For more information about these services and parameters, see ICSF Application
Programmer’s Guide, SC14-7508.

6.7.2 Performing a hybrid quantum-safe key exchange scheme by using ICSF
PKCS #11 services

A hybrid quantum-safe key exchange can be performed by using the PKCS #11 Derive Key
(CSFPDVK and CSFPDVK6) ICSF service.

Consider the following hybrid quantum-safe key exchange scheme that includes two
participants: Alice and Bob, who are two parties that want to securely exchange information.
They can be a company and a Business Partner, for example.

Step 1: Alice
1. Alice generates an ECC key pair (EC-pub-A, EC-priv-A) for key agreement by using the

PKCS #11 Generate Key Pair service.

2. Alice creates EC-cert-A: authenticated form of EC-pub-A

Note: AES-ciph-B must be as strong as the derived shared key.
Chapter 6. Deploying quantum-safe capabilities 115

3. Alice sends EC-cert-A to Bob.

Step 2: Bob
1. Bob receives and validates EC-cert-A.

2. Bob creates the following keys:

– ECC (EC-pub-B, EC-priv-B) key pair for key agreement by using the PKCS #11
Generate Key Pair service.

– CRYSTALS-Kyber (Kyb-pub-B, Kyb-priv-B) key pair by using the PKCS #11 Generate
Key Pair service.

– EC-pub-A PKCS #11 public key object that was pulled from EC-cert-A by using the
PKCS #11 Token Record Create service.

– Kyb-cert-B and EC-cert-B: authenticated forms of Kyb-pub-B and EC-pub-B.

3. Bob derives a generic secret key object (GenSec-B) by passing EC-priv-B and EC-pub-A
to PKCS #11 Derive Key.

4. Bob sends Kyb-cert-B and EC-cert-B to Alice.

Step 3: Alice
1. Alice receives and validates Kyb-cert-B and EC-cert-B.

2. Alice creates Kyb-pub-B and EC-pub-B PKCS #11 public key objects that were pulled from
their respective certificates by using the PKCS #11 Token Record Create service.

3. Alice derives a generic secret key object (GenSec-A) by passing EC-priv-A and EC-pub-B
to PKCS #11 Derive Key.

4. Alice passes GenSec-A and Kyb-pub-B to PKCS #11 Derive Key to encapsulate random
key material (rand-A). The Kyber-encapsulated random key material [Kyb-pub-B(rand-A)]
and derived shared key are returned. The shared key is the output in the
target_key_handle parameter.

5. Alice sends to Bob the Kyber-encapsulated random key material [Kyb-pub-B(rand-A)].

Step 4: Bob
Bob passes GenSec-B and Kyb-priv-A to PKCS #11 Derive Key to decapsulate
[Kyb-pub-B(rand-A)]. The derived shared key is output in the target_key_handle parameter.

The shared key is now established at Alice and Bob.

Authentication of the public keys that are used in the scheme is the responsibility of the host.

Currently, CRYSTALS-Kyber keys do not participate in PKI processes. The Kyb-cert-B
certificate for the CRYSTALS-Kyber public key recognizes that certificate formats are needed
for the authentication part of a protocol.

The lack of PKI support for CRYSTALS-Kyber can be circumvented by using a trustworthy
public RSA or EC certificate to verify a signed Kyber SPKI.

For more information about a REXX sample that shows this end-to-end scheme that uses
ICSF PKCS #11 services, see E.2, “PKCS #11 hybrid quantum-safe key exchange scheme
REXX sample” on page 176.

For more information about these services and parameters, see the ICSF Application
Programmer’s Guide, SC14-7508.
116 Transitioning to Quantum-Safe Cryptography on IBM Z

6.8 Quantum-safe hashing

Hashing is the process of transforming data (for example a key or message) into a shorter,
fixed-length message digest by using a cryptographic hash algorithm.

Hashes are used in various cryptographic operations, such as digital signatures, and key
derivation functions, such as PBKDF2, Message Authentication Codes (MAC). The message
digests that are produced from a hash algorithm ensures the integrity of the data and protects
against unauthorized alteration of the source data.

It is important to start transitioning from weaker hash algorithms, such as SHA-1 or MD2, to
much stronger hash algorithms, such as SHA-256 or SHA-512.

This section describes how to perform an SHA-512 hash over a message by using CCA and
PKCS #11 ICSF services.

6.8.1 Hashing a message with the SHA-512 algorithm by using ICSF CCA
services

To hash a message by using the SHA-512 algorithm, use the One-Way Hash Generate
(CSNBOWH or CSNBOWH1 and CSNEOWH or CSNEOWH1) ICSF service.

To hash a message by using the SHA-512 algorithm, complete the following steps:

1. Call the CSFBOWH ICSF service that passes the SHA-512 and ONLY rules.

2. Pass the message to hashed in the text parameter. (Optionally, the message can be
hashed in parts by using the chaining flag rules and the chaining_vector parameter.)

The 64-byte message digest is output in the hash parameter.

For more information about a sample REXX program that showcases this process, see F.1,
“CCA SHA-512 one-way hash REXX sample” on page 188.

For more information about this service and parameters, see ICSF Application Programmer’s
Guide, SC14-7508.

6.8.2 Hashing a message with the SHA-512 algorithm by using ICSF PKCS #11
services

To hash a message by using the SHA-512 algorithm, use the PKCS #11 One-Way Hash,
Sign, or Verify (CSFPOWH and CSFPOWH6) ICSF service.

To hash a message by using the SHA-512 algorithm, complete the following steps:

1. Initialize a PKCS #11 token by using the PKCS #11 Token Record Create (CSFPTRC and
CSFPTRC6) service.

2. Call the CSFPOWH ICSF service that passes the SHA-512 and ONLY rules.

3. Pass the message to hashed in the text parameter.

4. Pass the token handle that was created in step one in handle parameter. (Optionally, the
message can be hashed in parts by using the chaining flag rules and the chaining_vector
parameter.)

The 64-byte message digest is output in the hash parameter.
Chapter 6. Deploying quantum-safe capabilities 117

For more information about a sample REXX program that showcases step 2, see F.2, “PKCS
#11 SHA-512 one-way hash REXX sample” on page 189.

For more information about these services and parameters, see ICSF Application
Programmer’s Guide, SC14-7508.

6.9 Validating your quantum-safe transition

As discussed in 5.1, “Collection tools overview” on page 72, the usage statistics are key to a
comprehensive cryptographic inventory.

In Example 6-14, we can see that non-quantum-safe algorithms are used in our DATAOWN
job (which is a formatted report of SMF record type 82, subtype 31 [hex ’001F’]). We can
identify the use of single DES, AES 128, weak RSA 1024, and so on.

Example 6-14 Crypto usage statistics:Checking for non-quantum-safe algorithms

Type=82 Subtype=001F Crypto Usage Statistics
Written periodically to record crypto usage counts
22 Feb 2022 15:12:27.73
 TME... 005389D5 DTE... 0122053F SID... SP21 SSI... 00000000 STY... 001F
 INTVAL_START.. 02/22/2022 19:11:30.001815
 INTVAL_END.... 02/22/2022 19:12:27.737573

USERID_AS.....DATAOWN
 USERID_TK.....
 JOBID.........J0000055
 JOBNAME.......DATAOWN
 JOBNAME2......
 PLEXNAME......SYS1
 DOMAIN........0
 ENG...CARD...8C11/99EA6127...17
 ENG...CPACF...150
 ALG...DES56......2
 ALG...AES128.....2
 ALG...RSA1024....1
 ALG...ECCBP192...1
 ALG...MD5........45
 ALG...RPMD160....15
 ALG...SHA1....... 70
 ALG...SHA3-224... 13
 ALG...SHA3-256... 15
 ALG...SHA3-384... 13
 ALG...SHA3-512... 13
 ALG...SHAKE128... 12
 ALG...SHAKE256... 14
 SRV...CSFKYT..... 2
 SRV...CSFDSG..... 2
 SRV...CSFOWH..... 264
 SRV...CSFOWH1.... 3
 SRV...CSFIQF..... 485
 SRV...CSFIQF2.... 2
118 Transitioning to Quantum-Safe Cryptography on IBM Z

After identifying the weak algorithms and replacing them with quantum-safe algorithms, ICSF
usage statistics can be used to monitor progress with a formatted report of SMF record type
82, subtype 31 (hex ‘001F’).

In Example 6-15, most algorithms are quantum-safe. For example, we no longer use AES
128; instead, we use AES 256. We can also see that CRYSTALS-Dilithium and
CRYSTALS-Kyber algorithms are being used.

Example 6-15 Crypto usage statistics: Checking for quantum-safe algorithms

Type=82 Subtype=001F Crypto Usage Statistics
Written periodically to record crypto usage counts
Mar 2022 15:35:30.00
 TME... 0055A5C8 DTE... 0122070F SID... SP21 SSI... 00000000 STY... 001F
 INTVAL_START.. 03/11/2022 19:33:59.202360
 INTVAL_END.... 03/11/2022 19:35:30.001479
 USERID_AS..... QSAFE
 USERID_TK.....
 JOBID......... T0000046
 JOBNAME....... QSAFE
 JOBNAME2......
 PLEXNAME...... SYS1
 DOMAIN........ 0
 ENG...CARD...8C00/99EA6006... 17
 ENG...CPACF... 5
 ALG...DES112..... 1
 ALG...AES256..... 9
 ALG...ECCP384.... 6
 ALG...KY1024R2... 3
 ALG...LI2-87R3... 4
 SRV...CSFDSG..... 2
 SRV...CSFDSV..... 2
 SRV...CSFPKG..... 3
 SRV...CSFPKE..... 1
 SRV...CSFPKX..... 3
 SRV...CSFKYT2.... 2
 SRV...CSFEDH..... 2
 SRV...CSFPKB..... 3
 SRV...CSFCTT2.... 1

Important: Data that is protected with a retired algorithm must not remain in the system
after it is protected by using a quantum-safe algorithm. Removing the data that was
encrypted by using a retired algorithm eliminate the risk of an attacker finding that data and
breaking the encryption.
Chapter 6. Deploying quantum-safe capabilities 119

120 Transitioning to Quantum-Safe Cryptography on IBM Z

Appendix A. Finding cryptographic attributes

The purpose of this appendix is to introduce a process that can be used when creating your
cryptographic inventory with the available tools. The output from this process helps you to
make qualified choices in terms of protecting your programs and applications against future
threats from quantum computer attacks, which are also known as a cryptographically
relevant quantum computer (CRQC) attacks.

The suggested process requires manual analysis to discover which cryptographic algorithms,
key lengths, and key labels are used in your programs and applications.

For more information, see “Establishing a cryptographic inventory” on page 58 and Chapter 5,
“Creating a cryptographic inventory” on page 71.

This appendix includes the following topics:

� A.1, “Tools for cryptographic inventory” on page 122
� A.2, “Investigation process” on page 123
� A.3, “Process that was used” on page 125

A

© Copyright IBM Corp. 2022. 121

A.1 Tools for cryptographic inventory

The examples that are used in this appendix show how cryptographic attributes can be
located for a COBOL program by using the following IBM Z tools:

� System Display and Search Facility (SDSF) Job Listing

This utility allows you to monitor, control, and view the output of jobs in the system. After
submitting a job, it is common to use SDSF to review the output for successful completion,
or to review and correct JCL errors.

� ICSF System Management Facility (SMF) records:

ICSF uses SMF record type 82 to record certain ICSF events. The following recorded
information is important to our discussion:

– Sub-type 31, which contains cryptographic statistics data for cryptographic engines
(ENG), cryptographic services (SRV), and cryptographic algorithms (ALG) for a Logical
Partition (LPAR)

– Sub-types 40 – 42, which contains ICSF key lifecycle events.

– Sub-types 44 – 46, which contains ICSF key usage events.

� IBM Application Discovery and Delivery Intelligence, which provides API call information
from scanning COBOL applications.

� IBM Crypto Analytics Tool (CAT), which provides information about the cryptographic
entities, including the key material and key data sets.

For more information about tools, see Chapter 5, “Creating a cryptographic inventory” on
page 71.
122 Transitioning to Quantum-Safe Cryptography on IBM Z

A.2 Investigation process

You can start the investigation process based on output from any of the four IBM tools, as
shown in Figure A-1.

Figure A-1 Tools for cryptographic inventory

The investigation process and steps vary depending on the output from the tool with which
you start. The different steps are described next.

A.2.1 Starting with application source code scan from IBM ADDI

If you are starting with application source code that was scanned by IBM ADDI and uses
cryptography, complete the following steps:

1. Select the application source code from the ADDI scan that you want to investigate.

2. Identify the ProgramName in the ADDI scan of the application source code.

3. Determine the job or started task that runs the executable.

4. Create reports from ICSF SMF record type 82:

– Tailor CSFSMFJ in SYS1.SAMPLIB to fit your environment.
– Run CSFSMFJ.

5. Identify the ICSF services that are called by the job or started task and the related key
material from the SMF records.

6. Review the key details from the CAT snapshot.
Appendix A. Finding cryptographic attributes 123

A.2.2 Starting with a policy check in the IBM CAT

If you ran a policy check in the IBM CAT component and now have a list of keys from your
keystores that are deemed to be weak keys, complete the following steps:

1. Review the key details from the CAT policy scan in the snapshot.

2. Create reports from ICSF SMF record type 82 that reference the key details by key label or
by key check value (KCV):

– Tailor CSFSMFJ in SYS1.SAMPLIB to fit your environment
– Run CSFSMFJ

3. Identify the ICSF service calls that relate to the key material from the SMF records.

4. Determine the job or started task from the ICSF SMF records.

5. Identify the executable from the job listing in SDSF and application source code.

6. Review the ADDI scanning of the application source code.

A.2.3 Starting with an application that you know

If you know the application that uses cryptographic functions, complete the following steps:

1. Select the application jobs or started tasks in the SDSF job listing.

2. Determine the application source code from the executable from the job.

3. Create reports from ICSF SMF record type 82:

– Tailor CSFSMFJ in SYS1.SAMPLIB to fit your environment
– Run CSFSMFJ

4. Identify the ICSF service calls that relate to key material from the ICSF SMF records.

5. Verify the ADDI scanning of the application source code.

6. Review the key details from the CAT snapshot.

A.2.4 Starting with SMF record type 82 reports

If you find SMF 82 subtype 31 records that indicate the use of weak cryptographic algorithms,
complete the following steps:

1. Identify the jobs or started tasks and users, ICSF service calls, and key material from the
SMF 82 records.

2. Find the jobs or started tasks from the SMF records in the SDSF job listing.

3. Identify the executable modules from the SDSF job listing.

4. Determine the application source code from the executable.

5. Verify the ADDI scanning of the application source code.

6. Review the key details from the CAT snapshot.

Regardless of the investigation process that you decide to use, all findings of the
cryptographic usage and configuration in your environment must be documented in your
cryptographic inventory, as described in “Establishing a cryptographic inventory” on page 58.
124 Transitioning to Quantum-Safe Cryptography on IBM Z

A.3 Process that was used

In this section, we provide examples of how to proceed with the investigation process by
using an ADDI scanning of a set of source modules, as described in A.2.1, “Starting with
application source code scan from IBM ADDI” on page 123. Examples of key usage events
and a key lifecycle event are provided.

A.3.1 Examples of finding key usage events

In Figure A-2, we can see that a source module and a few sub modules were ADDI scanned.
The program is called DKMSKSA (see the ProgramName column).

Figure A-2 Sample1: Source module

Next, we identify two cryptographic functions that are used by DKMSKSA and map them to
the key material.

A call to APIName CSNBENC that is found in DKMSKSA shows the StartRow (8960 and
9202) of the call to CSNBENC.

The value that is shown in the StartRow column is the line number in DKMSKSA where
CSNBENC is called.

To map the APIName from CCA to an ICSF service call from the ProgramName and
APIDescription, we must take a short detour. In Figure A-3, we can see that the ICSF entry
point name (CSFENC) corresponds to the CCA entry point name (CSNBENC).

Figure A-3 Resource names for CCA and ICSF entry points: Encipher

The CCA and ICSF entry point names tell you which cryptographic operations are being
used.

The DKMSRKX source module also does a call to CSNDRKX (see Figure A-4). It can be
seen that the CSNDRKX call is made from StartRow 395 in DKMSRKX (ProgramName).

Figure A-4 Sample 2: Source module
Appendix A. Finding cryptographic attributes 125

Once again to map the APIName from CCA to an ICSF service call from the ProgramName
and APIDescription, we must take a short detour. In Figure A-5 we can see that the ICSF
entry point name (CSNDRKX) corresponds to the CCA entry point name (CSFRKX).

Figure A-5 Resource names for CCA and ICSF entry points - Remote Key Export

For more information about resource names for CCA and ICSF entry points, see CCA and
ICSF entry points, see ICSF Application Programmer’s Guide, SC14-7508.

Having identified the two ICSF service calls, we now proceed to the next step in the
investigation process: identifying the executable module from the source module. This
process requires that you understand the steps that are involved in building an executable
from application source code and finding the name of the executable.

In our environment, we determined that the DKMSKSA includes the DKMSRKX source code.

Next, we identify the corresponding job execution from the SDSF job listing. At this point,
application knowledge is needed in terms of which jobs are involved in executing DKMSKSA
and how the program invocation is made. Figure A-6 shows a list of the jobs that execute the
DKMSKSA program. The jobs executed on 25 May 2022 (05/25/2022) around 7:00 AM.

Figure A-6 Job listing

Important: The job execution time is needed to identify the relevant SMF records.
126 Transitioning to Quantum-Safe Cryptography on IBM Z

https://www-40.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R5sc147508/$file/csfb400_icsf_apg_hcr77d2.pdf
https://www-40.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R5sc147508/$file/csfb400_icsf_apg_hcr77d2.pdf

For our example, we identified the job IDs that are based on the DKMSKSA program in the
JCL libraries. This task also is manual.

Using two jobs as examples for SMF record type 82 subtypes 31 and 44 correlation, we look
at job IDs JOB07760 and JOB07761 from Figure A-6 on page 126.

By looking at the JCL library for the two members for DPEAPPD (JOB07760) and DPEADPE
(JOB07761), we can determine from the SYSTSIN statement which program is to be run.

In Example A-1, we see job DPEAPPD runs program PANDEC.

Example A-1 JCL for DPEAPPD

//DPEAPPD JOB (9060-02292-01-33,LU2),'RUN PANDEC ',
// MSGCLASS=T,CLASS=G,MSGLEVEL=(1,1)
/*JOBPARM S=MVSF
//*--
//RUNAPI EXEC PGM=IKJEFT01,REGION=0M
//STEPLIB DD DISP=SHR,DSN=DPLMF.KSA0501X.LOAD
// DD DISP=SHR,DSN=DPLMF.KSA0501X.LOADD
// DD DSN=DB2FSYS.SDSNEXIT,DISP=SHR
// DD DSN=DB2FSYS.SDSNLOAD,DISP=SHR
//SYSTSIN DD *
DSN SYST(DB2F)
RUN PROGRAM(PANDEC) PLAN(KSA0501V)
END

In Example A-2, we see job DPEAPPE runs program PANENC.

Example A-2 JCL for DPEAPPE

//DPEAPPE JOB (9060-02292-01-33,LU2),'RUN PANENC ',
// MSGCLASS=T,CLASS=G,MSGLEVEL=(1,1)
/*JOBPARM S=MVSF
//*ABCDE---
//RUNAPI EXEC PGM=IKJEFT01,REGION=0M
//STEPLIB DD DISP=SHR,DSN=DPLMF.KSA0501X.LOAD
// DD DISP=SHR,DSN=DPLMF.KSA0501X.LOADD
// DD DSN=DB2FSYS.SDSNEXIT,DISP=SHR
// DD DSN=DB2FSYS.SDSNLOAD,DISP=SHR
//SYSTSIN DD *
DSN SYST(DB2F)
RUN PROGRAM(PANENC) PLAN(KSA0501V)
END

Both programs (PANDEC and PANENC) call the DKMSKSA program. Although the input
parameters are different, this issue is irrelevant in the context of mapping the key material and
ICSF services to DKMSKSA.

In Example A-3, we can see PANENC calls DKMSKSA.

Example A-3 PANENC calls DKMSKSA

BA-CALL-DKMSKSA SECTION.

 * CALL DKMSKSA *

Appendix A. Finding cryptographic attributes 127

 CALL DKMSKSA USING DAPI-KSA-V01
 DISPLAY 'API RETURN-CODE = ' RETURN-CODE

We have two job IDs (JOB07760 and JOB07761) that run program DKMSKSA. Now, we need
to identify the ICSF SMF record type 82 entries. We want to search for subtypes 31, 40 – 42,
and 44 – 46 in the timeframe in which the job was run. In our environment, SMF records are
collected in half-hour intervals.

In Example A-4, the SMF record interval on 05/25/2022 is 07:00:30 - 07:30:30 when
JOB07760 (DEAPPD) user DPEAP was run.

Example A-4 SMF record type 82 subtype 31 (hex ‘001F’)

Subtype=001F Crypto Usage Statistics
 Written periodically to record crypto usage counts
 25 May 2022 7:30:30.11
 TME... 00293EA3 DTE... 0122145F SID... MVSF SSI... 00000000 STY... 001F
 INTVAL_START.. 05/25/2022 07:00:30.026731
 INTVAL_END.... 05/25/2022 07:30:30.111713
 USERID_AS..... DPEAP
 USERID_TK.....
 JOBID......... JOB07760
 JOBNAME....... DPEAPPD
 JOBNAME2......
 PLEXNAME...... MVSFPLEX
 DOMAIN........ 0
 ENG...CARD...7C01/93AACJPJ... 5
 ENG...CARD...7C03/93AACJN6... 5
 ALG...DES112..... 10
 SRV...CSFENC..... 10

In JOB07761 (DEAPPE), user DPEAP was run at the same time as JOB07760 (see
Example A-5).

Example A-5 SMF record type 82 subtype 31 (hex ‘001F’)

Subtype=001F Crypto Usage Statistics
 Written periodically to record crypto usage counts
 25 May 2022 7:30:30.11
 TME... 00293EA3 DTE... 0122145F SID... MVSF SSI... 00000000 STY... 001F
 INTVAL_START.. 05/25/2022 07:00:30.026731
 INTVAL_END.... 05/25/2022 07:30:30.111713
 USERID_AS..... DPEAP
 USERID_TK.....
 JOBID......... JOB07761
 JOBNAME....... DPEAPPE
 JOBNAME2......
 PLEXNAME...... MVSFPLEX
 DOMAIN........ 0
 ENG...CARD...7C01/93AACJPJ... 5
 ENG...CARD...7C03/93AACJN6... 5
 ALG...DES112..... 10
 SRV...CSFENC..... 10
128 Transitioning to Quantum-Safe Cryptography on IBM Z

The information in the different subtypes varies. Subtypes 31 and 40 – 42 all contain job
name and user ID; sub-types 44 – 46 are accumulated over user ID and key ID. For the ICSF
service that is called CSFENC, we must find a subtype 44 (hex ‘002C’) that maps to CSFENC
for user DPEAP over the relevant period.

The usage count in subtype 44 records might be lager than identified in the subtype 31
records. In Example A-6, we can see a record that has 20 calls to CSFENC for user DPEAP
in the relevant period of our application. This result corresponds with the two usage statistics
records in which the two jobs in Example A-4 and Example A-5 had 10 calls to CSFENC
each.

In some calls that were made to ICSF, the key label might not be present; rather, the key
fingerprint or key check value is present to help identify a key.

Example A-6 Subtype 44 key usage event

Subtype=002C CCA Symmetric Key Usage Event
 Written for usage events related to symmetric CCA tokens
 25 May 2022 11:02:46.08
 TME... 003CADA0 DTE... 0122145F SID... MVSF SSI... 00000000 STY... 002C
 STOD.. 05/25/2022 05:00:48.402960
 ETOD.. 05/25/2022 11:02:45.849556
 SRV... CSFENC
 USGC.. 20
 LBL... VDEKDESW3.00.500000.203704.IX0001 DATA
 TOKFMT Fixed
 KALG.. DES
 KSEC.. Wrapped by MK
 CV.... '00007D0003600081'x (DATA*)
 TIV... 'C97A80A9'x
 KFP... 010105D5B74D
 ENCZ.. 'D5B74D'x
 End User Identity...
 USRI.. DPEAP
Appendix A. Finding cryptographic attributes 129

A key usage event record is available that relates to two job executions. The key label is
identified as VDEKDESW3.00.500000.203704.IX0001. The key label and details can also be
found in the IBM CAT GUI (see Figure A-7).

Figure A-7 Key label and details

A.3.2 Examples of finding key lifecycle events

Starting from the SDSF job listing that is shown in Figure A-6 on page 126, we use job ID
JOB07756 as an example for cryptographic usage and key lifecycle events. For this example,
we correlate SMF record type 82 subtypes 31 and 40.

JOB07756 is run by using the JCL member DPEAPDER (see Example A-7). Here, we find
that program DKMSKSA calls DERKEYS.

Example A-7 JCL for DPEAPDER

//DPEAPDER JOB (9060-02292-01-33,LU2),'TEST DERKEYS',
// MSGCLASS=T,CLASS=G,MSGLEVEL=(1,1)
/*JOBPARM S=MVSF
//RUNAPI EXEC PGM=IKJEFT01,REGION=0M
//STEPLIB DD DISP=SHR,DSN=DPLMF.KSA0501X.LOAD
// DD DISP=SHR,DSN=DPLMF.KSA0501X.LOADD
// DD DSN=DB2FSYS.SDSNEXIT,DISP=SHR
// DD DSN=DB2FSYS.SDSNLOAD,DISP=SHR
//SYSTSIN DD *
DSN SYST(DB2F)
RUN PROGRAM(DERKEYS) PLAN(KSA0501V)
END
130 Transitioning to Quantum-Safe Cryptography on IBM Z

For JOB07756 (DEAPDER, user DPEAP), we see in Example A-8 that the record covers the
interval of 05/25/2022, 07:00:30 - 07:30:30.

Example A-8 SMF record type 82 subtype 31 (hex ‘001F’)

Subtype=001F Crypto Usage Statistics
 Written periodically to record crypto usage counts
 25 May 2022 7:30:30.11
 TME... 00293EA3 DTE... 0122145F SID... MVSF SSI... 00000000 STY... 001F
 INTVAL_START.. 05/25/2022 07:00:30.026731
 INTVAL_END.... 05/25/2022 07:30:30.111713
 USERID_AS..... DPEAP
 USERID_TK.....
 JOBID......... JOB07756
 JOBNAME....... DPEAPDER
 JOBNAME2......
 PLEXNAME...... MVSFPLEX
 DOMAIN........ 0
 ENG...CARD...7C01/93AACJPJ... 20
 ENG...CARD...7C03/93AACJN6... 21
 ENG...CPACF... 1
 ALG...DES112..... 7
 ALG...DES168..... 51
 ALG...SHA1....... 1
 SRV...CSFKTB..... 8
 SRV...CSFOWH..... 1
 SRV...CSFDKG..... 8
 SRV...CSFRKX..... 17

Among the ICSF services called in this job, CSFRKX is called 17 times during the execution.
CSFRKX triggers a key lifecycle event, in this case subtype 40 (hex ‘0028’) records are
generated. These records are written shortly after the call occurs and is not an aggregated
record as with the key usage event records. We can then search for a subtype 40 records in
the timeframe of the job execution and for the job name DPEAPDER (see Example A-9).

Example A-9 SMF record type 82 subtype 40 (hex ‘0028’)

Subtype=0028 CCA Symmetric Key Lifecycle Event
 Written for lifecycle events related to symmetric CCA tokens
 25 May 2022 7:01:41.30
 TME... 00269B52 DTE... 0122145F SID... MVSF SSI... 00000000 STY... 0028
 KEV... Key Exported
 SRV... CSFRKX
 LBL... VZMKDES.00.3000

EXPORTER
 KFP... 01010562C123
 ENCZ.. '62C123'x
 TOKFMT Fixed
 KALG.. DES
 KSEC.. Wrapped by MK
 CV.... '00417E0003600081'x (EXPORTER/OKEYXLAT)
 TIV... '384479E0'x
 ICSF Server Identity...
 USRI.. CSF00000
 GRPN.. CC
 JBN... CSF
Appendix A. Finding cryptographic attributes 131

 RST... 7:35:21.23
 RSD... 24 May 2022
 SUID.. 4040404040404040
 End User Identity...
 USRI.. DPEAP
 GRPN.. DP
 JBN... DPEAPDER
 RST... 7:01:41.18
 RSD... 25 May 2022
 SUID.. 4040404040404040

The key label in this case is identified as VZMKDES.00.3000 and can be found in IBM CAT, as
shown in Figure A-8.

Figure A-8 IBM CAT - key label and details

A.3.3 Summary

We started with an ADDI scan of programs, DKMSKSA and DKMSRKX. Then, we identified
two ICSF service calls, the jobs that performed them, and the cryptographic keys that were
used in the ICSF service calls and key lifecycle events.

Searching through ICSF SMF records and SDSF job listings can be a significant undertaking
and time consuming, depending on the use of cryptographic functions. A deep understanding
of your JCL, applications, and programs is essential.

In addition, ICSF SMF records are not always written at the same time. In our environment,
SMF type record 82 subtype 31 are written twice every hour (at top and bottom of the hour),
and subtypes 40 – 42 are written as they occur. SMF record type 82 subtypes 44 – 46 are
written at six-hour intervals, beginning at the time ICSF is started. The intervals at which the
SMF records are written must be considered when identifying application and program use of
ICSF service calls and their associated cryptographic material.
132 Transitioning to Quantum-Safe Cryptography on IBM Z

Appendix B. Generating quantum-safe keys

The examples in this appendix are REXX executables that can be used to generate
quantum-safe keys that use CCA and PKCS#11.

This appendix includes the following topics:

� B.1, “CCA AES 256-bit key generation REXX sample” on page 134
� B.2, “PKCS #11 AES 256-bit key generation REXX sample” on page 137
� B.3, “CCA CRYSTALS-Dilithium key pair generation REXX sample” on page 139
� B.4, “PKCS #11 CRYSTALS-Dilithium key pair generation REXX sample” on page 142
� B.5, “CCA CRYSTALS-Kyber key pair generation REXX sample” on page 144
� B.6, “PKCS #11 CRYSTALS-Kyber key pair generation REXX sample” on page 147

B

© Copyright IBM Corp. 2022. 133

B.1 CCA AES 256-bit key generation REXX sample

A CCA AES 256-bit key generation REXX sample is shown in Example B-1.

Example B-1 CCA AES 256-bit key generation REXX sample

/* rexx */
/*---*/
/* Generate a secure CCA 256-bit AES CIPHER key */
/*---*/

/* expected results */
ExpRC = '00000000'x ;
ExpRS = '00000000'x ;

/*---*/
/* Build skeleton token with key usage and key management */
/*---*/

KTB2_rule_array = 'INTERNAL' ||,
 'AES ' ||,
 'NO-KEY ' ||,
 'CIPHER ' ||,
 'ENCRYPT ' ||,
 'DECRYPT ' ||,
 'C-XLATE ' ||,
 'ANY-MODE' ||,
 'NOEX-SYM' ||,
 'NOEX-RAW' ||,
 'NOEXUASY' ||,
 'NOEXAASY' ||,
 'NOEX-DES' ||,
 'NOEX-AES' ||,
 'NOEX-RSA' ||,
 'XPRTCPAC'

call CSNBKTB2

/*---*/
/* Generate the AES key using the skeleton token from KTB2 */
/*---*/
KGN2_Rule_Array = 'AES ' ||,
 'OP '
KGN2_clear_key_Bit_Len = '00000100'x /* 256-bit */
KGN2_key_Type_1 = 'TOKEN '
KGN2_key_Type_2 = ''
KGN2_gen_key_1_Len = '000002D5'x
KGN2_gen_key_1 = left(KTB2_target_key_token,c2d(KGN2_gen_key_1_Len))

call CSNBKGN2

exit
134 Transitioning to Quantum-Safe Cryptography on IBM Z

/* --- */
/* CSNBKTB2 - Key Token Build2 */
/* */
/* Builds a variable-length AES skeleton token. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */
CSNBKTB2:

 KTB2_rc = 'ffffffff'x ;
 KTB2_rs = 'ffffffff'x ;
 KTB2_exit_Length = '00000000'x ;
 KTB2_exit_Data = '' ;
 KTB2_key_name_len = '00000000'x ;
 KTB2_key_name = '';
 KTB2_user_data_Len = '00000000'x ;
 KTB2_user_data = '';
 KTB2_token_data_Len = '00000000'x ;
 KTB2_token_data = '';
 KTB2_clear_key = '';
 KTB2_service_data = '';
 KTB2_service_data_Len = D2C(length(KTB2_service_data),4) ;
 KTB2_target_key_token_Len = d2c(725,4) ;
 KTB2_target_key_token = copies('00'x,c2d(KTB2_target_key_token_Len)) ;
 KTB2_clear_key_bit_Len = '00000000'x;
 KTB2_Rule_count = D2C(length(KTB2_rule_array)/8,4) ;

 address linkpgm 'CSNBKTB2' ,
 'KTB2_rc' 'KTB2_rs' ,
 'KTB2_exit_Length' 'KTB2_exit_Data' ,
 'KTB2_rule_count' 'KTB2_rule_array' ,
 'KTB2_clear_key_bit_Len' ,
 'KTB2_clear_key' ,
 'KTB2_key_name_Len' 'KTB2_key_name' ,
 'KTB2_user_data_Len' 'KTB2_user_data' ,
 'KTB2_token_data_Len' 'KTB2_token_data' ,
 'KTB2_service_data_Len' 'KTB2_service_data' ,
 'KTB2_target_key_token_Len' 'KTB2_target_key_token' ;

 KTB2_target_key_token = ,
 substr(KTB2_target_key_token,1,c2d(KTB2_target_key_token_len))

 If (KTB2_RC <> ExpRC) | (KTB2_RS <> ExpRS) then
 do;
 say 'KTB2 failed : rc =' c2x(KTB2_RC) 'rs =' c2x(KTB2_RS)
 end;
 else
 say 'KTB2 successful : rc =' c2x(KTB2_RC) 'rs =' c2x(KTB2_RS)

return
/* --- */
/* CSNBKGN - Key Generate */
/* */
Appendix B. Generating quantum-safe keys 135

/* Generates either one or two DES or AES keys encrypted under a */
/* master key (internal form) or KEK (external form). */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */
CSNBKGN2:

 KGN2_rc = 'ffffffff'x ;
 KGN2_rs = 'ffffffff'x ;
 KGN2_Exit_Length = '00000000'x ;
 KGN2_Exit_Data = '' ;
 KGN2_Rule_count = D2C(length(KGN2_rule_array)/8,4)
 KGN2_key_Name_1_Len = '00000000'x ;
 KGN2_key_Name_1 = '';
 KGN2_key_Name_2_Len = '00000000'x ;
 KGN2_key_Name_2 = '';
 KGN2_user_data_1_Len = '00000000'x ;
 KGN2_user_data_1 = '';
 KGN2_user_data_2_Len = '00000000'x ;
 KGN2_user_data_2 = '';
 KGN2_KEK_1_Len = '00000000'x ;
 KGN2_KEK_1 = '';
 KGN2_KEK_2_Len = '00000000'x;
 KGN2_KEK_2 = '';
 KGN2_gen_key_2_Len = '00000000'x;
 KGN2_gen_key_2 = '';

 address linkpgm 'CSNBKGN2' ,
 'KGN2_rc' 'KGN2_rs' ,
 'KGN2_Exit_Length' 'KGN2_Exit_Data' ,
 'KGN2_Rule_Count' 'KGN2_Rule_Array' ,
 'KGN2_clear_key_Bit_Len' ,
 'KGN2_key_Type_1' 'KGN2_key_Type_2' ,
 'KGN2_key_Name_1_Len' 'KGN2_key_Name_1' ,
 'KGN2_key_Name_2_Len' 'KGN2_key_Name_2' ,
 'KGN2_user_data_1_Len' 'KGN2_user_data_1' ,
 'KGN2_user_data_2_Len' 'KGN2_user_data_2' ,
 'KGN2_KEK_1_Len' 'KGN2_KEK_1' ,
 'KGN2_KEK_2_Len' 'KGN2_KEK_2' ,
 'KGN2_gen_key_1_Len' 'KGN2_gen_key_1' ,
 'KGN2_gen_key_2_Len' 'KGN2_gen_key_2' ;

 If (KGN2_RC <> ExpRC) | (KGN2_RS <> ExpRS) then
 do;
 say 'KGN2 failed: rc =' c2x(KGN2_RC) 'rs =' c2x(KGN2_RS)
 end;
 else
 say 'KGN2 successful: rc =' c2x(KGN2_RC) 'rs =' c2x(KGN2_RS)

 KGN2_gen_key_1 = substr(KGN2_gen_key_1,1,c2d(KGN2_gen_key_1_len))
 KGN2_gen_key_2 = substr(KGN2_gen_key_2,1,c2d(KGN2_gen_key_2_len))

Return
136 Transitioning to Quantum-Safe Cryptography on IBM Z

B.2 PKCS #11 AES 256-bit key generation REXX sample

A PKCS #11 AES 256-bit key generation REXX sample is shown in Example B-2.

Example B-2 PKCS #11 AES 256-bit key generation REXX sample

/*rexx*/
/*---*/
/* Generate a secure 256-bit PKCS #11 AES key */
/*---*/
Call TCSetup

/* expected results */
ExpRC = '00000000'x ;
ExpRS = '00000000'x ;

/*---*/
/* Generate the AES key using the attribute list */
/*---*/

 GSK_Handle = Left('QSAFE.TEST.TOKEN',44) ;
 GSK_AttrList = '0007'x ||, /* number attributes */
 CKA_CLASS ||'0004'x || CKO_SECRET_KEY ||,
 CKA_KEY_TYPE ||'0004'x || CKK_AES ||,
 CKA_VALUE_LEN ||'0004'x || '00000020'x ||, /* AES 256-bit */
 CKA_TOKEN ||'0001'x || CK_TRUE ||,
 CKA_IBM_SECURE ||'0001'x || CK_TRUE ||,
 CKA_ENCRYPT ||'0001'x || CK_TRUE ||,
 CKA_DECRYPT ||'0001'x || CK_TRUE

 Call CSFPGSK;

exit
/* --- */
/* PKCS #11 Generate Secret Key */
/* Use the generate secret key callable service to generate a */
/* secret key or set of domain parameters. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */
 CSFPGSK:
 GSK_RC = 'FFFFFFFF'x ;
 GSK_RS = 'FFFFFFFF'x ;
 GSK_Exit_Length = '00000000'x ;
 GSK_Exit_Data = '' ;
 GSK_Rule_Count = '00000001'x;
 GSK_Rule_Array = 'KEY ';
 GSK_Parms_List = ''
 GSK_Parms_List_Length = '00000000'x

 GSK_AttrListLength = D2C(Length(GSK_AttrList),4);
Appendix B. Generating quantum-safe keys 137

 /* call GSK */
 address linkpgm 'CSFPGSK' ,
 'GSK_RC' 'GSK_RS' ,
 'GSK_Exit_Length' 'GSK_Exit_Data' ,
 'GSK_Handle' ,
 'GSK_Rule_Count' 'GSK_Rule_Array' ,
 'GSK_AttrListLength' 'GSK_AttrList' ,
 'GSK_Parms_List_Length' 'GSK_Parms_List' ;

If (GSK_RC <> ExpRC) | (GSK_RS <> ExpRS) then
 say 'GSK failed: rc =' c2x(GSK_rc) 'rs =' c2x(GSK_rs) ;
else
 say 'GSK successful : rc =' c2x(GSK_rc) 'rs =' c2x(GSK_rs) ;

return

/* --- */
/* */
/* --- */
TCSetup:

CKK_AES = '0000001F'X

CKO_SECRET_KEY = '00000004'X

CKA_CLASS = '00000000'X
CKA_TOKEN = '00000001'X
CKA_IBM_SECURE = '80000006'X
CKA_KEY_TYPE = '00000100'X
CKA_ENCRYPT = '00000104'X;
CKA_DECRYPT = '00000105'X;
CKA_VALUE_LEN = '00000161'X

CK_TRUE = '01'x
CK_FALSE = '00'x

Return

EXIT;
138 Transitioning to Quantum-Safe Cryptography on IBM Z

B.3 CCA CRYSTALS-Dilithium key pair generation REXX
sample

A CCA CRYSTALS-Dilithium key pair generation REXX sample is shown in Example B-3.

Example B-3 CCA CRYSTALS-Dilithium key pair generation REXX sample

/* Rexx */

/*---*/
/* Generate a secure CRYSTALS-Dilithium CCA key pair */
/*---*/

 /* expected results */
 ExpRc = '00000000'x
 ExpRs = '00000000'x

/*---*/
/* Build skeleton token with key usage */
/*---*/
 PKB_Rule_Count = '00000002'x ;
 PKB_Rule_Array = 'QSA-PAIR' ||,
 'U-DIGSIG'

 /* CRYSTALS-Dilithium 87 Round 3 KVS */
 PKB_KVS = '03'x ||, /* Alg Id */
 '00'x ||, /* clear key format */
 '0807'x ||, /* Alg param */
 '0000'x ||, /* clear key len */
 '0000'x /* Reserved */

 /* CRYSTALS-Dilithium 65 Round 3 KVS */
 /*
 PKB_KVS = '03'x ||, /* Alg Id */
 '00'x ||, /* clear key format */
 '0605'x ||, /* Alg param */
 '0000'x ||, /* clear key len */
 '0000'x /* Reserved */
 */
 call CSNDPKB

/*---*/
/* Generate the Dilithium key pair using the skeleton token from PKB */
/*---*/
 PKG_Rule_Array = 'MASTER '
 PKG_Skeleton_Key = PKB_Token;
 PKG_Skeleton_Key_length = PKB_Token_length;

 call CSNDPKG

 Exit
Appendix B. Generating quantum-safe keys 139

/*--*/
/* PKA Key Token Build - used to create PKA key tokens. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/*--*/
CSNDPKB:

/* initialize parameter list */
PKB_Rc = 'FFFFFFFF'x ;
PKB_Rs = 'FFFFFFFF'x ;
Exit_Length = '00000000'x ;
Exit_Data = '' ;
PKB_KVS_Length = d2c(length(PKB_KVS),4) ;
PKB_UAD_Length = '00000000'x ;
PKB_UAD = ''
PKB_PrivName_Len = '00000000'x ;
PKB_PrivName = ''
Reserved2_Length = '00000000'x ; Reserved2 = '' ;
Reserved3_Length = '00000000'x ; Reserved3 = '' ;
Reserved4_Length = '00000000'x ; Reserved4 = '' ;
Reserved5_Length = '00000000'x ; Reserved5 = '' ;
PKB_Token_Length = d2c(8000,4) ;
PKB_Token = copies('00'x,8000) ;

/* call CSNDPKB */
address linkpgm 'CSNDPKB' ,
 'PKB_Rc' 'PKB_Rs' ,
 'Exit_Length' 'Exit_Data' ,
 'PKB_Rule_Count' 'PKB_Rule_Array' ,
 'PKB_KVS_Length' 'PKB_KVS' ,
 'PKB_PrivName_Len' 'PKB_PrivName' ,
 'PKB_UAD_Length' 'PKB_UAD' ,
 'Reserved2_Length' 'Reserved2' ,
 'Reserved3_Length' 'Reserved3' ,
 'Reserved4_Length' 'Reserved4' ,
 'Reserved5_Length' 'Reserved5' ,
 'PKB_Token_Length' 'PKB_Token' ;

if (PKB_Rc \= ExpRc | PKB_Rs \= ExpRs) then
 say 'PKB failed: rc =' c2x(PKB_Rc) 'rs =' c2x(PKB_Rs) ;
else
 do ;
 say 'PKB sucessful: rc =' c2x(PKB_Rc) 'rs =' c2x(PKB_Rs) ;
 PKB_Token = substr(PKB_Token,1,c2d(PKB_Token_Length)) ;
 end

 return

/* --- */
/* PKA Key Generate - Used to generate PKA key pairs */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */
CSNDPKG:
140 Transitioning to Quantum-Safe Cryptography on IBM Z

 PKG_rc = 'FFFFFFFF'x ;
 PKG_rs = 'FFFFFFFF'x ;
 PKG_Exit_length = '00000000'x ;
 PKG_Exit_Data = '' ;
 PKG_Rule_count = d2c(length(PKG_Rule_Array)/8,4)
 PKG_Token_length = '00001F40'x ;
 PKG_Token = copies('00'x,c2d(PKG_token_length)) ;
 PKG_Regen_data = ''
 PKG_Regen_Data_length = d2c(length(PKG_Regen_data),4)
 PKG_Transport_Key_Id = ''

 address linkpgm 'CSNDPKG' ,
 'PKG_rc' 'PKG_rs' ,
 'PKG_Exit_length' 'PKG_Exit_Data' ,
 'PKG_Rule_Count' 'PKG_Rule_Array' ,
 'PKG_Regen_Data_length' 'PKG_Regen_Data' ,
 'PKG_Skeleton_Key_length' 'PKG_Skeleton_Key' ,
 'PKG_Transport_Key_Id' ,
 'PKG_Token_length' 'PKG_Token' ;

if (PKG_rc \= ExpRc | PKG_rs \= ExpRs) then
 say 'PKG failed: rc =' c2x(PKG_rc) 'rs =' c2x(PKG_rs)
else
 Do;
 say 'PKG successful : rc =' c2x(PKG_rc) 'rs =' c2x(PKG_rs) ;
 PKG_Token = substr(PKG_Token,1,c2d(PKG_Token_length)) ;
 End;

Return
Appendix B. Generating quantum-safe keys 141

B.4 PKCS #11 CRYSTALS-Dilithium key pair generation REXX
sample

A PKCS #11 CRYSTALS-Dilithium key pair generation REXX sample is shown in
Example B-4.

Example B-4 PKCS #11 CRYSTALS-Dilithium key pair generation REXX sample

/* Rexx */

/*---*/
/* Generate a secure PKCS #11 Dilithium key pair */
/*---*/

/* expected results */
ExpRC = '00000000'x ;
ExpRS = '00000000'x ;

Call TCSetup

GKP_Handle = Left('QSAFE.TEST.TOKEN',44)

GKP_PrivKey_Attr_List = '0005'x||,
 CKA_CLASS ||'0004'x|| CKO_PRIVATE_KEY ||,
 CKA_KEY_TYPE ||'0004'x|| CKK_IBM_DILITHIUM ||,
 CKA_TOKEN ||'0001'x|| CK_TRUE ||,
 CKA_SIGN ||'0001'x|| CK_TRUE ||,
 CKA_IBM_SECURE ||'0001'x|| CK_TRUE

GKP_PubKey_Attr_List = '0005'x||,
 CKA_CLASS ||'0004'x|| CKO_PUBLIC_KEY ||,
 CKA_KEY_TYPE ||'0004'x|| CKK_IBM_DILITHIUM ||,
 CKA_IBM_DILITHIUM_MODE ||'000D'x|| DER_OID_8_7_R3 ||,
 CKA_TOKEN ||'0001'x|| CK_TRUE ||,
 CKA_VERIFY ||'0001'x|| CK_TRUE

Call CSFPGKP;

Exit
/* --- */
/* PKCS #11 Generate Key Pair */
/* Use the PKCS #11 Generate Key Pair callable service to generate */
/* an RSA, DSA, Elliptic Curve, Diffie-Hellman, Dilithium (LI2) or */
/* Kyber key pair. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */
CSFPGKP:
 GKP_RC = 'FFFFFFFF'x
 GKP_RS = 'FFFFFFFF'x
 GKP_Exit_Length = '00000000'x
 GKP_Exit_Data = ''
 GKP_Rule_Count = '00000000'x
 GKP_Rule_Array = ''
 GKP_PubKey_Handle = copies(' ',44)
142 Transitioning to Quantum-Safe Cryptography on IBM Z

 GKP_PrivKey_Handle = copies(' ',44)

 GKP_PubKey_Attr_List_Length = D2C(Length(GKP_PubKey_Attr_List),4)
 GKP_PrivKey_Attr_List_Length = D2C(Length(GKP_PrivKey_Attr_List),4)

 address linkpgm 'CSFPGKP',
 'GKP_RC' 'GKP_RS',
 'GKP_Exit_Length' 'GKP_Exit_Data',
 'GKP_Handle',
 'GKP_Rule_Count' 'GKP_Rule_Array',
 'GKP_PubKey_Attr_List_Length',
 'GKP_PubKey_Attr_List',
 'GKP_PubKey_Handle',
 'GKP_PrivKey_Attr_List_Length',
 'GKP_PrivKey_Attr_List',
 'GKP_PrivKey_Handle'

 if (GKP_RC \= ExpRC | GKP_RS \= ExpRS) Then
 say 'GKP failed: rc =' c2x(GKP_rc) 'rs =' c2x(GKP_rs) ;
 else
 say 'GKP successful : rc =' c2x(GKP_rc) 'rs =' c2x(GKP_rs) ;

return;

/* --- */
/* */
/* --- */
TCSetup:

DER_OID_8_7_R3 = '060B2B0601040102820B070807'X

CKK_IBM_DILITHIUM = '80010023'X

CKO_PUBLIC_KEY = '00000002'X
CKO_PRIVATE_KEY = '00000003'X

CKA_IBM_SECURE = '80000006'X
CKA_KEY_TYPE = '00000100'X
CKA_CLASS = '00000000'X
CKA_TOKEN = '00000001'X
CKA_IBM_DILITHIUM_MODE = '80000010'X
CKA_SIGN = '00000108'X;
CKA_VERIFY = '0000010A'X;

CK_TRUE = '01'x
CK_FALSE = '00'x
Return

EXIT;
Appendix B. Generating quantum-safe keys 143

B.5 CCA CRYSTALS-Kyber key pair generation REXX sample

A CCA CRYSTALS-Kyber key pair generation REXX sample is shown in Example B-5.

Example B-5 CCA CRYSTALS-Kyber key pair generation REXX sample

/* Rexx */

/*---*/
/* Generate a secure CRYSTALS-Kyber CCA key pair */
/*---*/

 /* expected results */
 ExpRc = '00000000'x
 ExpRs = '00000000'x

/*---*/
/* Build skeleton token with key usage */
/*---*/
 PKB_Rule_Count = '00000003'x ;
 PKB_Rule_Array = 'QSA-PAIR' ||,
 'U-KEYENC' ||,
 'U-DATENC'

 /* CRYSTALS-Kyber 1024 Round 2 KVS */
 PKB_KVS = '02'x ||, /* Alg Id */
 '00'x ||, /* clear key format */
 '1024'x ||, /* Alg param */
 '0000'x ||, /* clear key len */
 '0000'x /* Reserved */

 call CSNDPKB

/*---*/
/* Generate the Kyber key pair using the skeleton token from PKB */
/*---*/
 PKG_Rule_Array = 'MASTER '
 PKG_Skeleton_Key = PKB_Token;
 PKG_Skeleton_Key_length = PKB_Token_length;

 call CSNDPKG

 Exit
/*--*/
/* PKA Key Token Build - used to create PKA key tokens. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/*--*/
CSNDPKB:

/* initialize parameter list */
144 Transitioning to Quantum-Safe Cryptography on IBM Z

PKB_Rc = 'FFFFFFFF'x ;
PKB_Rs = 'FFFFFFFF'x ;
Exit_Length = '00000000'x ;
Exit_Data = '' ;
PKB_KVS_Length = d2c(length(PKB_KVS),4) ;
PKB_UAD_Length = '00000000'x ;
PKB_UAD = ''
PKB_PrivName_Len = '00000000'x ;
PKB_PrivName = ''
Reserved2_Length = '00000000'x ; Reserved2 = '' ;
Reserved3_Length = '00000000'x ; Reserved3 = '' ;
Reserved4_Length = '00000000'x ; Reserved4 = '' ;
Reserved5_Length = '00000000'x ; Reserved5 = '' ;
PKB_Token_Length = d2c(8000,4) ;
PKB_Token = copies('00'x,8000) ;

/* call CSNDPKB */
address linkpgm 'CSNDPKB' ,
 'PKB_Rc' 'PKB_Rs' ,
 'Exit_Length' 'Exit_Data' ,
 'PKB_Rule_Count' 'PKB_Rule_Array' ,
 'PKB_KVS_Length' 'PKB_KVS' ,
 'PKB_PrivName_Len' 'PKB_PrivName' ,
 'PKB_UAD_Length' 'PKB_UAD' ,
 'Reserved2_Length' 'Reserved2' ,
 'Reserved3_Length' 'Reserved3' ,
 'Reserved4_Length' 'Reserved4' ,
 'Reserved5_Length' 'Reserved5' ,
 'PKB_Token_Length' 'PKB_Token' ;

if (PKB_Rc \= ExpRc | PKB_Rs \= ExpRs) then
 say 'PKB failed: rc =' c2x(PKB_Rc) 'rs =' c2x(PKB_Rs) ;
else
 do ;
 say 'PKB sucessful: rc =' c2x(PKB_Rc) 'rs =' c2x(PKB_Rs) ;
 PKB_Token = substr(PKB_Token,1,c2d(PKB_Token_Length)) ;
 end

 return

/* --- */
/* PKA Key Generate - Used to generate PKA key pairs */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */
CSNDPKG:

 PKG_rc = 'FFFFFFFF'x ;
 PKG_rs = 'FFFFFFFF'x ;
 PKG_Exit_length = '00000000'x ;
 PKG_Exit_Data = '' ;
 PKG_Rule_count = d2c(length(PKG_Rule_Array)/8,4)
 PKG_Token_length = '00001F40'x ;
 PKG_Token = copies('00'x,c2d(PKG_token_length)) ;
Appendix B. Generating quantum-safe keys 145

 PKG_Regen_data = ''
 PKG_Regen_Data_length = d2c(length(PKG_Regen_data),4)
 PKG_Transport_Key_Id = ''

 address linkpgm 'CSNDPKG' ,
 'PKG_rc' 'PKG_rs' ,
 'PKG_Exit_length' 'PKG_Exit_Data' ,
 'PKG_Rule_Count' 'PKG_Rule_Array' ,
 'PKG_Regen_Data_length' 'PKG_Regen_Data' ,
 'PKG_Skeleton_Key_length' 'PKG_Skeleton_Key' ,
 'PKG_Transport_Key_Id' ,
 'PKG_Token_length' 'PKG_Token' ;

if (PKG_rc \= ExpRc | PKG_rs \= ExpRs) then
 say 'PKG failed: rc =' c2x(PKG_rc) 'rs =' c2x(PKG_rs)
else
 Do;
 say 'PKG successful : rc =' c2x(PKG_rc) 'rs =' c2x(PKG_rs) ;
 PKG_Token = substr(PKG_Token,1,c2d(PKG_Token_length)) ;
 End;

Return
146 Transitioning to Quantum-Safe Cryptography on IBM Z

B.6 PKCS #11 CRYSTALS-Kyber key pair generation REXX
sample

A PKCS #11 CRYSTALS-Kyber key pair generation REXX sample is shown in Example B-6.

Example B-6 PKCS #11 CRYSTALS-Kyber key pair generation REXX sample

/* Rexx */

Call TCSetup

/*---*/
/* Generate a secure PKCS #11 Kyber key pair */
/*---*/

/* expected results */
ExpRC = '00000000'x ;
ExpRS = '00000000'x ;

Call TCSETUP

GKP_Handle = Left('QSAFE.TEST.TOKEN',44)

GKP_PrivKey_Attr_List = '0007'x||,
 CKA_CLASS ||'0004'x|| CKO_PRIVATE_KEY ||,
 CKA_KEY_TYPE ||'0004'x|| CKK_IBM_KYBER ||,
 CKA_TOKEN ||'0001'x|| CK_TRUE ||,
 CKA_DERIVE ||'0001'x|| CK_TRUE ||,
 CKA_DECRYPT ||'0001'x|| CK_TRUE ||,
 CKA_UNWRAP ||'0001'x|| CK_TRUE ||,
 CKA_IBM_SECURE ||'0001'x|| CK_TRUE

GKP_PubKey_Attr_List = '0007'x||,
 CKA_CLASS ||'0004'x|| CKO_PUBLIC_KEY ||,
 CKA_KEY_TYPE ||'0004'x|| CKK_IBM_KYBER ||,
 CKA_IBM_KYBER_MODE ||'000D'x|| DER_OID_KYBER_1024_R2 ||,
 CKA_TOKEN ||'0001'x|| CK_TRUE ||,
 CKA_WRAP ||'0001'x|| CK_TRUE ||,
 CKA_DERIVE ||'0001'x|| CK_TRUE ||,
 CKA_ENCRYPT ||'0001'x|| CK_TRUE

Call CSFPGKP;

Exit
/* --- */
/* PKCS #11 Generate Key Pair */
/* Use the PKCS #11 Generate Key Pair callable service to generate */
/* an RSA, DSA, Elliptic Curve, Diffie-Hellman, Dilithium (LI2) or */
/* Kyber key pair. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */
CSFPGKP:
 GKP_RC = 'FFFFFFFF'x
 GKP_RS = 'FFFFFFFF'x
Appendix B. Generating quantum-safe keys 147

 GKP_Exit_Length = '00000000'x
 GKP_Exit_Data = ''
 GKP_Rule_Count = '00000000'x
 GKP_Rule_Array = ''
 GKP_PubKey_Handle = copies(' ',44)
 GKP_PrivKey_Handle = copies(' ',44)

 GKP_PubKey_Attr_List_Length = D2C(Length(GKP_PubKey_Attr_List),4)
 GKP_PrivKey_Attr_List_Length = D2C(Length(GKP_PrivKey_Attr_List),4)

 address linkpgm 'CSFPGKP',
 'GKP_RC' 'GKP_RS',
 'GKP_Exit_Length' 'GKP_Exit_Data',
 'GKP_Handle',
 'GKP_Rule_Count' 'GKP_Rule_Array',
 'GKP_PubKey_Attr_List_Length',
 'GKP_PubKey_Attr_List',
 'GKP_PubKey_Handle',
 'GKP_PrivKey_Attr_List_Length',
 'GKP_PrivKey_Attr_List',
 'GKP_PrivKey_Handle'

 if (GKP_RC \= ExpRC | GKP_RS \= ExpRS) Then
 say 'GKP failed: rc =' c2x(GKP_rc) 'rs =' c2x(GKP_rs) ;
 else
 say 'GKP successful : rc =' c2x(GKP_rc) 'rs =' c2x(GKP_rs) ;

return;

/* --- */
/* */
/* --- */
TCSetup:

DER_OID_KYBER_1024_R2 = '060B2B0601040102820B050404'X;

CKK_IBM_KYBER = '80010024'X;

CKO_PUBLIC_KEY = '00000002'X
CKO_PRIVATE_KEY = '00000003'X

CKA_IBM_SECURE = '80000006'X
CKA_KEY_TYPE = '00000100'X
CKA_CLASS = '00000000'X
CKA_TOKEN = '00000001'X
CKA_IBM_KYBER_MODE = '8000000E'X;
CKA_ENCRYPT = '00000104'X;
CKA_DECRYPT = '00000105'X;
CKA_WRAP = '00000106'X;
CKA_UNWRAP = '00000107'X;
CKA_DERIVE = '0000010C'X;

CK_TRUE = '01'x
CK_FALSE = '00'x
148 Transitioning to Quantum-Safe Cryptography on IBM Z

Return

EXIT;
Appendix B. Generating quantum-safe keys 149

150 Transitioning to Quantum-Safe Cryptography on IBM Z

Appendix C. Translating plain text into cipher
text

The examples in this appendix are REXX executables that can be used to translate plain text
into cipher text by using CCA and PKCS#11.

This appendix includes the following topics:

� C.1, “CCA ciphertext translation REXX sample” on page 152
� C.2, “PKCS #11 ciphertext translation REXX sample” on page 154

C

© Copyright IBM Corp. 2022. 151

C.1 CCA ciphertext translation REXX sample

A CCA ciphertext translation REXX sample is shown in Example C-1.

Example C-1 CCA ciphertext translation from DES to AES REXX sample

/* Rexx */

/*---*/
/* Translate existing ciphertext to an AES 256-bit key */
/*---*/

 /* expected results */
 ExpRc = '00000000'x
 ExpRs = '00000000'x

 /*--*/
 /* Call CSNBCTT2 to translate the existing ciphertext to AES */
 /*--*/
 CTT2_Rule_Count = '00000004'x
 CTT2_rule_array = 'I-CBC '||'O-CBC '||'IKEY-DES'||'OKEY-AES';
 CTT2_cipher_text_in = 'E7861BBEEA363B3C40168B3174C15D31'x ;

 /* Pass either the tokens or key labels of the encryption keys. */
 CTT2_key_ID_in = left('DATAENC#CTT2#DES#CIPHER',64)
 CTT2_key_ID_out = left('DATAENC#CTT2#AES256#CIPHER',64) ;

 Call CSNBCTT2

 exit
/*---*/
/* CipherText Translate2 */
/* */
/* This callable service deciphers encrypted data (ciphertext) under */
/* one cipher text translation key and reenciphers it under another */
/* cipher text translation key without having the data appear in the */
/* clear outside the cryptographic coprocessor. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/*---*/
CSNBCTT2:

 CTT2_rc = 'FFFFFFFF'x ;
 CTT2_rs = 'FFFFFFFF'x ;
 CTT2_Exit_Len = '00000000'x ;
 CTT2_Exit_Data = '' ;
 CTT2_IV_in_len = '00000008'X
 CTT2_IV_in = '0000000000000000'X
 CTT2_cipher_text_in_len = d2c(length(CTT2_cipher_text_in),4)
 CTT2_chaining_vector_len = '00000080'X
 CTT2_chaining_vector = copies('00'x,128)
 CTT2_IV_out_len = '00000010'X
 CTT2_IV_out = '0000000000000000'X
 CTT2_rsv1_len = '00000000'x
 CTT2_rsv1 = ''
152 Transitioning to Quantum-Safe Cryptography on IBM Z

 CTT2_rsv2_len = '00000000'x
 CTT2_rsv2 = ''
 CTT2_key_ID_in_len = '00000040'x
 CTT2_key_ID_out_len = '00000040'x
 CTT2_cipher_text_out_len = d2c(length(CTT2_cipher_text_in),4)
 CTT2_cipher_text_out = copies('00'x,c2d(CTT2_cipher_text_out_len))

 address linkpgm 'CSNBCTT2' ,
 'CTT2_rc' 'CTT2_rs' ,
 'CTT2_Exit_Len' 'CTT2_Exit_Data' ,
 'CTT2_Rule_Count' 'CTT2_Rule_array' ,
 'CTT2_key_ID_in_len' 'CTT2_key_ID_in' ,
 'CTT2_IV_in_len' 'CTT2_IV_in' ,
 'CTT2_cipher_text_in_len' 'CTT2_cipher_text_in',
 'CTT2_chaining_vector_len' 'CTT2_chaining_vector',
 'CTT2_key_ID_out_len' 'CTT2_key_ID_out' ,
 'CTT2_IV_out_len' 'CTT2_IV_out' ,
 'CTT2_cipher_text_out_len' 'CTT2_cipher_text_out',
 'CTT2_rsv1_len' 'CTT2_rsv1' ,
 'CTT2_rsv2_len' 'CTT2_rsv2' ;

 if (CTT2_rc \= ExpRc | CTT2_rs \= ExpRs) then
 say 'CTT2 failed: rc=' c2x(CTT2_rc) 'rs =' c2x(CTT2_rs) ;
 else
 say 'CTT2 successful: rc=' c2x(CTT2_rc) 'rs =' c2x(CTT2_rs) ;

 return;
Appendix C. Translating plain text into cipher text 153

C.2 PKCS #11 ciphertext translation REXX sample

A PKCS #11 ciphertext translation REXX sample is shown in Example C-2.

Example C-2 PKCS #11 ciphertext translation from DES to AES REXX sample

/* rexx */

/*---*/
/* Translate existing ciphertext to an AES 256-bit key */
/*---*/

 /* expected results */
 ExpRC = '00000000'x ;
 ExpRS = '00000000'x ;

 SKR_Rule_Array = 'D-CBCPAD' || 'E-CBCPAD'

 /*---*/
 /* Pass existing ciphertext and set IV according to the decryption */
 /* key. For DES keys, IV length is 8. */
 /*---*/
 SKR_dec_iv_length = '00000008'x;
 SKR_dec_iv = copies('00'x,c2d(SKR_dec_iv_length))
 SKR_dec_text =,
 '3AE0F4D65E911F061FED6FEB0CB84D6996A5623CADED94AEA3B8E2923F04E927'x ||,
 'DADFD96CCDDB5497442F6A75C82041AFE418D930AF4DE8B732A4D86C1D3F60EC'x ||,
 '530BB9336A042B2A398FE650B8E38D2451D2427B904ED7B1'x
 SKR_dec_text_length = d2c(length(SKR_dec_text),4)

 /*---*/
 /* Set encryption IV length to 16 for AES */
 /*---*/
 SKR_enc_iv_length = '00000010'x
 SKR_enc_iv = copies('00'x,c2d(SKR_enc_iv_length))

 /* Secure DES3 handle */
 SKR_dec_handle = 'QSAFE.TEST.TOKEN 00000001Y'
 /* Secure AES 256 handle */
 SKR_enc_handle = 'QSAFE.TEST.TOKEN 00000002Y'

 call CSFPSKR

 exit
/* --- */
/* PKCS #11 Secret Key Reencrypt */
/* */
/* Use the PKCS #11 Secret Key Reencrypt callable service to */
/* decrypt data and then reencrypt the data using secure secret */
/* keys. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */
CSFPSKR:
 SKR_rc = 'FFFFFFFF'x ;
154 Transitioning to Quantum-Safe Cryptography on IBM Z

 SKR_rs = 'FFFFFFFF'x ;
 SKR_Exit_Length = '00000000'x;
 SKR_Exit_Data = '';
 SKR_Rule_Count = '00000002'x;
 SKR_chain_data_length = '00000000'x
 SKR_chain_data = '';
 SKR_dec_text_id = '00000000'x;
 SKR_enc_text_length = D2C(1000,4);
 SKR_enc_text = COPIES('00'x,C2D(SKR_enc_text_length,4));
 SKR_enc_text_id = '00000000'x;

 address linkpgm 'CSFPSKR' ,
 'SKR_rc' 'SKR_rs' ,
 'SKR_Exit_Length' 'SKR_Exit_Data' ,
 'SKR_Rule_Count' 'SKR_Rule_Array',
 'SKR_dec_handle' 'SKR_enc_handle',
 'SKR_dec_iv_length' 'SKR_dec_iv' ,
 'SKR_enc_iv_length' 'SKR_enc_iv' ,
 'SKR_chain_data_length' 'SKR_chain_data',
 'SKR_dec_text_length' 'SKR_dec_text' ,
 'SKR_dec_text_id' ,
 'SKR_enc_text_length' 'SKR_enc_text' ,
 'SKR_enc_text_id' ;

 if (SKR_rc \= ExpRC | SKR_rs \= ExpRS) then
 say 'SKR failed: rc =' c2x(SKR_rc) 'rs =' c2x(SKR_rs)
 else
 say 'SKR successful rc =' c2x(SKR_rc) 'rs =' c2x(SKR_rs)
return;
Appendix C. Translating plain text into cipher text 155

156 Transitioning to Quantum-Safe Cryptography on IBM Z

Appendix D. Generating and verifying digital
signatures

The examples in this appendix are REXX executables that can be used to generate and verify
digital signatures using CCA and PKCS#11.

This appendix includes the following topics:

� D.1, “CCA CRYSTALS-Dilithium digital signature generation and verification REXX
sample” on page 158

� D.2, “PKCS #11 CRYSTALS-Dilithium digital signature generation and verification REXX
sample” on page 161

D

© Copyright IBM Corp. 2022. 157

D.1 CCA CRYSTALS-Dilithium digital signature generation and
verification REXX sample

A CCA CRYSTALS-Dilithium digital signature generation and verification REXX sample is
shown in Example D-1.

Example D-1 CCA CRYSTALS-Dilithium digital signature generation and verification REXX sample

/* rexx */

/*---*/
/* CRYSTALS-Dilithium Digital signature generation and verification */
/*---*/

/* expected results */
ExpRc = '00000000'x ;
ExpRs = '00000000'x ;

/*---*/
/* Call the CSNDDSG service passing the CRYSTALS-Dilithium private */
/* key. With a Crypto Express8S CCA Coprocessor, the message to be */
/* signed can be up to 15000 bytes. */
/*---*/
DSG_Rule_Array = 'CRDL-DSA' ||,
 'MESSAGE ' ||,
 'CRDLHASH'
/* CRYSTALS-Dilithium 87 Round 3 Private key */
DSG_priv_key = left('LI287R3.PRV.0001',64)
DSG_data = copies('G',15000) /* Message to Sign */

call CSNDDSG

/*---*/
/* Call the CSNDDSG service passing the CRYSTALS-Dilithium public */
/* key. */
/*---*/
DSV_Data = DSG_data
DSV_Sig_Field = DSG_sig_field
DSV_Rule_Array = DSG_Rule_Array
/* CRYSTALS-Dilithium 87 Round 3 Public key */
DSV_pub_key = left('LI287R3.PUB.0002',64)

call CSNDDSV

exit

/* --- */
/* Digital Signature Generate */
/* */
/* Use the Digital Signature Generate callable service to generate */
/* a digital signature using a PKA private key. */
/* */
158 Transitioning to Quantum-Safe Cryptography on IBM Z

/* See the ICSF Application Programmer's Guide for more details. */
/* --- */
CSNDDSG:

 DSG_rc = 'FFFFFFFF'x ;
 DSG_rs = 'FFFFFFFF'x ;
 DSG_Exit_Length = '00000000'x ;
 DSG_Exit_Data = '' ;
 DSG_Data_length = D2C(Length(DSG_Data),4);
 DSG_Sig_Field_Length = '00001388'x ;
 DSG_Sig_Bit_Length = '00000800'x ;
 DSG_Sig_Field = copies('00'x,c2d(DSG_Sig_field_length))
 DSG_rule_count = d2c(length(DSG_rule_array)/8,4)
 DSG_priv_key_length = d2c(length(DSG_priv_key),4)

address linkpgm 'CSNDDSG' ,
 'DSG_rc' 'DSG_rs' ,
 'DSG_Exit_Length' 'DSG_Exit_Data' ,
 'DSG_Rule_Count' 'DSG_Rule_Array' ,
 'DSG_priv_key_length' 'DSG_priv_key' ,
 'DSG_data_length' 'DSG_data' ,
 'DSG_sig_field_length' ,
 'DSG_sig_bit_length' ,
 'DSG_sig_field' ;

 DSG_sig_field = substr(DSG_sig_field,1,c2d(DSG_sig_field_length))

 if (DSG_rc \= ExpRc | DSG_rs \= ExpRs) then
 say 'DSG: failed: rc =' c2x(DSG_rc) 'rs =' c2x(DSG_rs)
 else
 say 'DSG successful : rc =' c2x(DSG_rc) 'rs =' c2x(DSG_rs) ;

 return;

/* --- */
/* Digital Signature Verify */
/* */
/* Use the Digital Signature Verify callable service to verify a */
/* digital signature using a PKA public key. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */
CSNDDSV:

 DSV_rc = 'FFFFFFFF'x ;
 DSV_rs = 'FFFFFFFF'x ;
 DSV_Exit_Length = '00000000'x ;
 DSV_Exit_Data = '' ;
 DSV_Data_length = D2C(Length(DSV_Data),4);
 DSV_Sig_Field_Length = d2c(length(DSV_sig_field),4)

 DSV_rule_count = d2c(length(DSV_rule_array)/8,4)
 DSV_pub_key_length = d2c(length(DSV_pub_key),4)
Appendix D. Generating and verifying digital signatures 159

 address linkpgm 'CSNDDSV' ,
 'DSV_rc' 'DSV_rs' ,
 'DSV_Exit_Length' 'DSV_Exit_Data' ,
 'DSV_Rule_Count' 'DSV_Rule_Array' ,
 'DSV_pub_key_length' 'DSV_pub_key' ,
 'DSV_data_length' 'DSV_data' ,
 'DSV_sig_field_length' ,
 'DSV_sig_field' ;

 if DSV_rc \= ExpRc | DSV_rs \= ExpRs then
 say 'DSV failed: rc =' c2x(DSV_rc) 'rs =' c2x(DSV_rs)
 else
 say 'DSV successful : rc =' c2x(DSV_rc) 'rs =' c2x(DSV_rs) ;

return;
160 Transitioning to Quantum-Safe Cryptography on IBM Z

D.2 PKCS #11 CRYSTALS-Dilithium digital signature generation
and verification REXX sample

A PKCS #11 CRYSTALS-Dilithium digital signature generation and verification REXX sample
is shown in Example D-2.

Example D-2 PKCS #11 CRYSTALS-Dilithium digital signature generation and verification REXX

/* rexx */

/*--*/
/* CRYSTALS-Dilithium Digital signature generation and verification */
/*--*/

 /* expected results */
 ExpRC = '00000000'x ;
 ExpRS = '00000000'x ;

/*--*/
/* Call the CSFPPKS service passing the CRYSTALS-Dilithium private */
/* key handle to generate the digital signature. */
/*--*/
 PKS_Rule_Array = 'LI2 '
 PKS_Key_Handle = 'QSAFE.TEST.TOKEN 00000003Y'
 PKS_Cipher_Value = Copies('A',128)
 PKS_Cipher_Value_Length = D2C(Length(PKS_Cipher_Value),4);
 PKS_Clear_Value_length = D2C(4596,4);
 PKS_Clear_Value = Copies('00'x, C2D(PKS_Clear_Value_length))

 Call CSFPPKS

/*--*/
/* Call the CSFPPKV service passing the CRYSTALS-Dilithium public */
/* key handle to verify the digital signature. */
/*--*/
 PKV_Key_Handle = 'QSAFE.TEST.TOKEN 00000002Y'

 Call CSFPPKV

 exit
/* --- */
/* PKCS #11 Private Key Sign */
/* */
/* Used to sign data using an ECC, RSA, DSA, or CRYSTALS-Dilithium */
/* private key. */
/* --- */
CSFPPKS:

 PKS_RC = 'FFFFFFFF'x ;
 PKS_RS = 'FFFFFFFF'x ;
 PKS_Exit_Length = '00000000'x ;
 PKS_Exit_Data = '' ;

 PKS_Rule_Count = d2c(length(PKS_Rule_Array)/8,4)
Appendix D. Generating and verifying digital signatures 161

 address linkpgm 'CSFPPKS' ,
 'PKS_rc' ,
 'PKS_rs' ,
 'PKS_Exit_Length' ,
 'PKS_Exit_Data' ,
 'PKS_Rule_Count' ,
 'PKS_Rule_Array' ,
 'PKS_Cipher_Value_Length' ,
 'PKS_Cipher_Value' ,
 'PKS_Key_Handle' ,
 'PKS_Clear_Value_Length' ,
 'PKS_Clear_Value' ;

 PKS_Clear_value = ,
 substr(PKS_clear_value,1,c2d(PKS_Clear_value_length))

 if (PKS_RC \= ExpRC | PKS_RS \= ExpRS) Then
 say 'PKS Failed : rc =' c2x(PKS_RC) 'rs =' c2x(PKS_RS) ;
 else
 say 'PKS Successful : rc =' c2x(PKS_RC) 'rs =' c2x(PKS_RS) ;
return;
/* --- */
/* PKCS #11 Public Key Verify */
/* */
/* Used to verify a signature using an ECC, RSA, DSA, or */
/* CRYSTALS-Dilithium public key. */
/* --- */
CSFPPKV:

 PKV_RC = 'FFFFFFFF'x ;
 PKV_RS = 'FFFFFFFF'x ;
 PKV_Exit_Length = '00000000'x ;
 PKV_Exit_Data = '';
 PKV_Cipher_Value_length = PKS_Cipher_Value_length
 PKV_Cipher_Value = PKS_Cipher_Value
 PKV_Clear_Value = PKS_Clear_Value
 PKV_Clear_Value_length = PKS_Clear_Value_length
 PKV_Rule_Array = PKS_Rule_Array
 PKV_Rule_Count = d2c(length(PKV_rule_Array)/8,4)

 address linkpgm 'CSFPPKV' ,
 'PKV_RC' ,
 'PKV_RS' ,
 'PKV_Exit_Length' ,
 'PKV_Exit_Data' ,
 'PKV_Rule_Count' ,
 'PKV_Rule_Array' ,
 'PKV_Clear_Value_Length' ,
 'PKV_Clear_Value' ,
 'PKV_Key_Handle' ,
 'PKV_Cipher_Value_length' ,
 'PKV_Cipher_Value' ;
162 Transitioning to Quantum-Safe Cryptography on IBM Z

 PKV_Cipher_value = ,
 substr(pkv_cipher_value,1,c2d(PKV_Cipher_value_length))

 if (PKV_RC \= ExpRC | PKV_RS \= ExpRS) Then
 say 'PKV Failed : rc =' c2x(PKV_RC) 'rs =' c2x(PKV_RS) ;
 else
 say 'PKV successful : rc =' c2x(PKV_RC) 'rs =' c2x(PKV_RS) ;

return;
Appendix D. Generating and verifying digital signatures 163

164 Transitioning to Quantum-Safe Cryptography on IBM Z

Appendix E. Creating a hybrid quantum-safe
key exchange

The examples in this appendix are REXX executables that can be used to create a hybrid
quantum-safe key exchange using CCA and PKCS#11.

This appendix includes the following topics:

� E.1, “CCA hybrid quantum-safe key exchange scheme REXX sample” on page 166
� E.2, “PKCS #11 hybrid quantum-safe key exchange scheme REXX sample” on page 176

E

© Copyright IBM Corp. 2022. 165

E.1 CCA hybrid quantum-safe key exchange scheme REXX
sample

A CCA hybrid quantum-safe key exchange scheme REXX sample is shown in Example E-1.

Example E-1 CCA Hybrid Quantum-safe key exchange scheme REXX sample

/* Rexx */

/*---*/
/* CCA Hybrid Quantum-safe Key exchange scheme */
/*---*/
/* PKE will require ACP '0083'x */
/* EDH will require ACP '035D'x */
/*---*/

CALL INITIALIZE

/* expected results */
Exp_rc = '00000000'x
Exp_rs = '00000000'x

/* global parameters */
exit_data_length = '00000000'x
exit_data = ''

/* PKB parameters */
private_name = ''
user_assoc_data = ''

/* PKE parameters */
PKE_rule_array = 'ZERO-PAD'
PKE_keyvalue = ''
sym_key_identifier = ''

/* KYT2 parameters */
kek_identifier = ''

/*---------------------*/
/* Create ALICE's keys */
/*---------------------*/

Say "Generating Alice's Kyber key pair..."

/*---*/
/* Build Kyber skeleton token with U-DATENC key usage flag */
/*---*/
PKB_rule_array = 'QSA-PAIR'||'U-DATENC'
kvs = '02'x ||, /* algorithm identifier */
 '00'x ||, /* clear key format skeleton */
 '1024'x ||, /* algorithm parameter */
 '0000'x ||, /* clear key length */
 '0000'x /* reserved */
CALL CSNDPKB
166 Transitioning to Quantum-Safe Cryptography on IBM Z

/*---*/
/* Generate Kyber key pair using built skeleton token */
/*---*/
PKG_rule_array = 'master '
CALL CSNDPKG

ALICE_Kyber_pvt = PKG_token

/*---*/
/* Extract Kyber public key from Kyber private key token */
/*---*/
PKX_source_key = PKG_token
CALL CSNDPKX

ALICE_Kyber_publ = PKX_token

/*---*/
/* Build ECC skeleton token with KEY-MGMT key usage flag */
/*---*/
Say "Generating Alice's ECC key pair..."
PKB_rule_array = 'ECC-PAIR'||'KEY-MGMT'
kvs = '00'x ||, /* Prime curve */
 '00'x ||, /* reserved */
 '0180'x ||, /* 384 bits */
 '0000'x ||, /* pvt key length */
 '0000'x /* pub key length */
CALL CSNDPKB

/*---*/
/* Generate ECC key pair using built skeleton token */
/*---*/
PKG_rule_array = 'master '
CALL CSNDPKG

ALICE_ECC_pvt = PKG_token

/*---*/
/* Extract ECC public key from ECC private key token */
/*---*/
PKX_source_key = PKG_token
CALL CSNDPKX

ALICE_ECC_publ = PKX_token

/*-------------------*/
/* Create BOB's keys */
/*-------------------*/

/*---*/
/* Build ECC skeleton token with KEY-MGMT key usage flag */
/*---*/
Say "Generating Bob's ECC key pair..."

PKB_rule_array = 'ECC-PAIR'||'KEY-MGMT'
Appendix E. Creating a hybrid quantum-safe key exchange 167

kvs = '00'x ||, /* Prime curve */
 '00'x ||, /* reserved */
 '0180'x ||, /* 384 bits */
 '0000'x ||, /* pvt key length */
 '0000'x /* pub key length */
CALL CSNDPKB

/*---*/
/* Generate ECC key pair using built skeleton token */
/*---*/
PKG_rule_array = 'master '
CALL CSNDPKG

BOB_ECC_pvt = PKG_token

/*---*/
/* Extract ECC public key from ECC private key token */
/*---*/
PKX_source_key = PKG_token
CALL CSNDPKX

BOB_ECC_publ = PKG_token

/*---*/
/* BOB creates the shared-key derivation input */
/*---*/
PKE_rule_array = 'ZERO-PAD'||'RANDOM '
PKE_keyvalue = '01010101010101010202020202020202'x||,
 '00000000000000000000000000000000'x
sym_key_identifier = BOB_AES_CIPHER_key_token
public_key_identifier = ALICE_KYBER_publ
CALL CSNDPKE

/*---*/
/* BOB completes the shared-key derivation */
/*---*/
KYBER_enciphered_PKE_keyvalue = enciphered_PKE_keyvalue
sym_enciphered_PKE_keyvalue = PKE_keyvalue

EDH_rule_array = 'DERIV01 '||'KEY-AES '||'QSA-ECDH'||'IHKEYAES'
private_key_identifier = BOB_ECC_pvt
private_kek_identifier = ''
public_key_identifier = ALICE_ECC_publ
hybrid_key_identifier = BOB_AES_CIPHER_key_token
party_identifier = 'Party#Identifier'
key_bit_length = d2c(192,4)
initialization_vector = '01010101010101010202020202020202'x
hybrid_ciphertext = sym_enciphered_PKE_keyvalue
output_kek_identifier = ''
output_key_identifier = AES_CIPHER_skeleton
CALL CSNDEDH

/*---*/
/* A Key check value (KCV) is computed over BOBs shared-key */
/*---*/
168 Transitioning to Quantum-Safe Cryptography on IBM Z

KYT2_rule_array = 'AES '||'GENERATE'||'CMACZERO' ;
key_identifier = output_key_identifier
CALL CSNBKYT2
KYT2_kcv_BOB = KYT2_kcv

/*---*/
/* Alice completes the shared-key derivation */
/*---*/
EDH_rule_array = 'DERIV01 '||'KEY-AES '||'QSA-ECDH'||'IHKEYKYB'
private_key_identifier = ALICE_ECC_pvt
private_kek_identifier = ''
public_key_identifier = BOB_ECC_publ
hybrid_key_identifier = ALICE_Kyber_pvt
party_identifier = 'Party#Identifier'
key_bit_length = d2c(192,4)
initialization_vector = ''
hybrid_ciphertext = KYBER_enciphered_PKE_keyvalue
output_kek_identifier = ''
output_key_identifier = AES_CIPHER_skeleton
CALL CSNDEDH
/*---*/
/* A Key check value (KCV) is computed over Alice's */
/* shared-key */
/*---*/
key_identifier = output_key_identifier
CALL CSNBKYT2
KYT2_kcv_ALICE = KYT2_kcv

/*---*/
/* Verify that both Alice and Bobs shared-keys are identical */
/*---*/
IF KYT2_kcv_ALICE = KYT2_kcv_BOB THEN SAY 'TESTCASE SUCCESSFUL'

Exit;
/*--*/
/* PKA Key Token Build - used to create PKA key tokens. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/*--*/
CSNDPKB:

PKB_rc = 'FFFFFFFF'x
PKB_rs = 'FFFFFFFF'x
exit_data_length = '00000000'x
exit_data = ''
PKB_rule_count = d2c(length(PKB_rule_array)/8,4)
kvs_length = d2c(length(kvs),4)
private_name_length = d2c(length(private_name),4)
user_assoc_data_length = d2c(length(user_assoc_data),4)
key_deriv_data_length = '00000000'x /* valid only with ECC-VER1 */
key_deriv_data = ''
reserved_field3_length = '00000000'x
reserved_field3 = ''
reserved_field4_length = '00000000'x
reserved_field4 = ''
Appendix E. Creating a hybrid quantum-safe key exchange 169

reserved_field5_length = '00000000'x
reserved_field5 = ''
PKB_token_length = d2c(6500,4) /* max */
PKB_token = d2c(0,6500)

ADDRESS LINKPGM 'CSNDPKB' ,
 'PKB_rc' 'PKB_rs' ,
 'exit_data_length' 'exit_data' ,
 'PKB_rule_count' 'PKB_rule_array' ,
 'kvs_length' 'kvs' ,
 'private_name_length' 'private_name' ,
 'user_assoc_data_length' 'user_assoc_data' ,
 'key_deriv_data_length' 'key_deriv_data' ,
 'reserved_field3_length' 'reserved_field3' ,
 'reserved_field4_length' 'reserved_field4' ,
 'reserved_field5_length' 'reserved_field5' ,
 'PKB_token_length' 'PKB_token'

IF PKB_rc \= Exp_rc | PKB_rs \= Exp_rs THEN
 SAY 'PKB FAILED rc =' c2x(PKB_rc) 'rs =' c2x(PKB_rs)
ELSE
 DO
 SAY 'PKB successful: rc =' c2x(PKB_rc) 'rs =' c2x(PKB_rs)
 PKB_token = SUBSTR(PKB_token,1,c2d(PKB_token_length))
 END

SAY
RETURN

/* --- */
/* PKA Key Generate - Used to generate PKA key pairs. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */
CSNDPKG:

PKG_rc = 'FFFFFFFF'x ;
PKG_rs = 'FFFFFFFF'x ;
PKG_rule_count = d2c(length(PKG_rule_array)/8,4) ;
regeneration_data_length = '00000000'x ;
regeneration_data = '' ;
skeleton_key_id_length = PKB_token_length ;
skeleton_key_id = PKB_token ;
transport_key_id = d2c(0,64) ;
PKG_token_length = d2c(6500,4) ;
PKG_token = copies('00'x,6500) ;

ADDRESS LINKPGM 'CSNDPKG' ,
 'PKG_rc' 'PKG_rs' ,
 'exit_data_length' 'exit_data' ,
 'PKG_rule_count' 'PKG_rule_array' ,
 'regeneration_data_length' 'regeneration_data' ,
 'skeleton_key_id_length' 'skeleton_key_id' ,
 'transport_key_id' ,
 'PKG_token_length' 'PKG_token'
170 Transitioning to Quantum-Safe Cryptography on IBM Z

IF PKG_rc \= Exp_rc | PKG_rs \= Exp_rs THEN
 SAY 'PKG FAILED rc =' c2x(PKG_rc) 'rs =' c2x(PKG_rs)
ELSE
 DO
 SAY 'PKG successful: rc =' c2x(PKG_rc) 'rs =' c2x(PKG_rs)
 PKG_token = SUBSTR(PKG_token,1,c2d(PKG_token_length))
 END

SAY
RETURN

/*--*/
/* PKA Public Key Extract */
/* */
/* Extracts a PKA public key token from a PKA internal (operational)*/
/* or external (importable) private key token. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/*--*/
CSNDPKX:

PKX_rc = 'FFFFFFFF'x ;
PKX_rs = 'FFFFFFFF'x ;
PKX_rule_array_count = '00000000'x ;
PKX_rule_array = '' ;
PKX_source_key_length = d2c(length(PKX_source_key),4) ;
PKX_token_length = d2c(6500,4) ;
PKX_token = copies('00'x,6500) ;

ADDRESS LINKPGM 'CSNDPKX' ,
 'PKX_rc' ,
 'PKX_rs' ,
 'exit_data_length' ,
 'exit_data' ,
 'PKX_rule_array_count' ,
 'PKX_rule_array' ,
 'PKX_source_key_length' ,
 'PKX_source_key' ,
 'PKX_token_length' ,
 'PKX_token'

IF PKX_rc /= Exp_rc | PKX_rs /= Exp_rs THEN
 DO ;
 SAY 'PKX FAILED rc =' c2x(PKX_rc) 'rs =' c2x(PKX_rs)
 END ;
ELSE
 DO ;
 SAY 'PKX successful: rc =' c2x(PKX_rc) 'rs =' c2x(PKX_rs)
 PKX_token = ,
 SUBSTR(PKX_token,1,c2d(PKX_token_length))
 END
SAY
RETURN
Appendix E. Creating a hybrid quantum-safe key exchange 171

/* -- */
/* PKA Encrypt */
/* */
/* Creates and encrypts derivation input */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* -- */
CSNDPKE:

PKE_rc = 'FFFFFFFF'x
PKE_rs = 'FFFFFFFF'x
exit_data_length = '00000000'x
exit_data = ''
PKE_rule_array_count = d2c(length(PKE_rule_array)/8,4)
PKE_keyvalue_length = d2c(length(PKE_keyvalue),4)
sym_key_identifier_length = d2c(length(sym_key_identifier),4)
public_key_identifier_length = d2c(length(public_key_identifier),4)
enciphered_PKE_keyvalue_length = d2c(1568,4)
enciphered_PKE_keyvalue = d2c(0,1568)

ADDRESS LINKPGM 'CSNDPKE' ,
 'PKE_rc' ,
 'PKE_rs' ,
 'exit_data_length' ,
 'exit_data' ,
 'PKE_rule_array_count' ,
 'PKE_rule_array' ,
 'PKE_keyvalue_length' ,
 'PKE_keyvalue' ,
 'sym_key_identifier_length' ,
 'sym_key_identifier' ,
 'public_key_identifier_length' ,
 'public_key_identifier' ,
 'enciphered_PKE_keyvalue_length' ,
 'enciphered_PKE_keyvalue' ;

IF PKE_rc /= Exp_rc | PKE_rs /= Exp_rs THEN
 SAY 'PKE FAILED rc=' c2x(PKE_rc) 'rs =' c2x(PKE_rs) ;
ELSE
 DO
 enciphered_PKE_keyvalue = ,
 substr(enciphered_PKE_keyvalue,1,c2d(enciphered_PKE_keyvalue_length))
 SAY 'PKE successful rc=' c2x(PKE_rc) 'rs =' c2x(PKE_rs) ;
 END
SAY
RETURN

/* -- */
/* ECC Diffie-Hellman */
/* */
/* Generates Z value from D-H process. Derives the shared-key using */
/* Z and rand-32 from PKE. */
172 Transitioning to Quantum-Safe Cryptography on IBM Z

/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* ---*/
CSNDEDH:

EDH_rc = 'FFFFFFFF'x
EDH_rs = 'FFFFFFFF'x
exit_data_length = '00000000'x
exit_data = ''
EDH_rule_array_count = d2c(length(EDH_rule_array)/8,4)
private_key_identifier_length = d2c(length(private_key_identifier),4)
private_kek_identifier_length = d2c(length(private_kek_identifier),4)
public_key_identifier_length = d2c(length(public_key_identifier),4)
hybrid_key_identifier_length = d2c(length(hybrid_key_identifier),4)
party_identifier_length = d2c(length(party_identifier),4)
initialization_vector_length = d2c(length(initialization_vector),4)
hybrid_ciphertext_length = d2c(length(hybrid_ciphertext),4)
reserved3_length = '00000000'x
reserved3 = ''
reserved4_length = '00000000'x
reserved4 = ''
reserved5_length = '00000000'x
reserved5 = ''
output_kek_identifier_length = d2c(length(output_kek_identifier),4)
output_key_identifier_length = d2c(900,4)
output_key_identifier = left(output_key_identifier,900)

ADDRESS LINKPGM 'CSNDEDH' ,
 'EDH_rc' ,
 'EDH_rs' ,
 'exit_data_length' ,
 'exit_data' ,
 'EDH_rule_array_count' ,
 'EDH_rule_array' ,
 'private_key_identifier_length' ,
 'private_key_identifier' ,
 'private_kek_identifier_length' ,
 'private_kek_identifier' ,
 'public_key_identifier_length' ,
 'public_key_identifier' ,
 'hybrid_key_identifier_length' ,
 'hybrid_key_identifier' ,
 'party_identifier_length' ,
 'party_identifier' ,
 'key_bit_length' ,
 'initialization_vector_length' ,
 'initialization_vector' ,
 'hybrid_ciphertext_length' ,
 'hybrid_ciphertext' ,
 'reserved3_length' ,
 'reserved3' ,
 'reserved4_length' ,
 'reserved4' ,
 'reserved5_length' ,
 'reserved5' ,
Appendix E. Creating a hybrid quantum-safe key exchange 173

 'output_kek_identifier_length' ,
 'output_kek_identifier' ,
 'output_key_identifier_length' ,
 'output_key_identifier' ;

IF EDH_rc /= Exp_rc | EDH_rs /= Exp_rs THEN
 SAY 'EDH FAILED rc =' c2x(EDH_rc) 'rs =' c2x(EDH_rs)
ELSE
 DO
 SAY 'EDH successful: rc =' c2x(EDH_rc) 'rs =' c2x(EDH_rs)
 output_key_identifier = ,
 substr(output_key_identifier,1,c2d(output_key_identifier_length))
 END
SAY
RETURN

/*---*/
/* Key Test2 */
/* */
/* Generate or verify a secure, cryptographic verification pattern */
/* (also referred to as a key check value) for AES, DES and HMAC */
/* keys. */
/*---*/
CSNBKYT2:

KYT2_rc = 'FFFFFFFF'x ;
KYT2_rs = 'FFFFFFFF'x ;
KYT2_rule_array_count = d2c(length(KYT2_rule_array)/8,4) ;
key_identifier_length = d2c(length(key_identifier),4) ;
kek_identifier_length = d2c(length(kek_identifier),4) ;
reserved_length = d2c(0,4) ;
reserved = '' ;
KYT2_kcv_length = d2c(8,4) ;
KYT2_kcv = d2c(0,c2d(KYT2_kcv_length)) ;

ADDRESS LINKPGM 'CSNBKYT2' ,
 'KYT2_rc' 'KYT2_rs' ,
 'exit_data_length' 'exit_data' ,
 'KYT2_rule_array_count' 'KYT2_rule_array',
 'key_identifier_length' 'key_identifier' ,
 'kek_identifier_length' 'kek_identifier' ,
 'reserved_length' 'reserved' ,
 'KYT2_kcv_length' 'KYT2_kcv' ;

IF KYT2_rc /= Exp_rc | KYT2_rs /= Exp_rs THEN
 SAY 'KYT2 failed: rc =' c2x(KYT2_rc) 'rs =' c2x(KYT2_rs) ;
ELSE
 SAY 'KYT2_kcv:' c2x(KYT2_kcv) ;

RETURN;

/* --- */
INITIALIZE:

BOB_AES_CIPHER_key_token = ,
174 Transitioning to Quantum-Safe Cryptography on IBM Z

'010000DA0500000003012058C870E9D3194F0000000000000000020200000100'x||,
'007440001A0002400002000102C000000003E000000005054145532443495048'x||,
'4552233139324249544034332E32432E31362020202020202020202020202020'x||,
'20C1C5E240C3C9D7C8'x||,
'C5D940F1F9F2C2C9E340F4F36DF2C36DF1F6E2219F0ED611C48D338927427F2D'x||,
'141BB9EA9B5B198C98E141BFDD0FFC7B403B8F68620E8744CC92E321354C0707'x||,
'A2CC1E32C835563FDB749C76FF3A0CB32DB0667FA1CA77E8F1B1'x

/* symmetric key skeletons */
AES_CIPHER_SKELETON = ,
'010000380500020200000100'x||,
'001A0000000000000002000102C000000003E00000000000'x

RETURN
Appendix E. Creating a hybrid quantum-safe key exchange 175

E.2 PKCS #11 hybrid quantum-safe key exchange scheme
REXX sample

A PKCS #11 hybrid quantum-safe key exchange scheme REXX sample is shown in
Example E-2.

Example E-2 PKCS #11 Hybrid Quantum-safe key exchange scheme REXX sample

/* REXX */

/***/
/* PKCS #11 Hybrid Quantum-safe Key Exchange Scheme */
/***/
SIGNAL ON NOVALUE;

Call TCSETUP

/***/
/* Common test data */
/***/
/* expected results */
ExpRC = '00000000'x ;
ExpRS = '00000000'x ;

exit_data_length = '00000000'X;
exit_data = '';
GKP_EC_pub_attr_list =,
 '0006'X ||,
 CKA_CLASS || '0004'X || CKO_PUBLIC_KEY ||,
 CKA_KEY_TYPE || '0004'X || CKK_EC ||,
 CKA_TOKEN || '0001'X || CK_TRUE ||,
 CKA_IBM_SECURE || '0001'X || CK_TRUE ||,
 CKA_EC_PARAMS || D2C(LENGTH(secp521r1),2) ||,
 secp521r1 ||,
 CKA_LABEL /*|| 'llll'X || 'label' */ ;
GKP_EC_prv_attr_list =,
 '0005'X ||,
 CKA_CLASS || '0004'X || CKO_PRIVATE_KEY ||,
 CKA_KEY_TYPE || '0004'X || CKK_EC ||,
 CKA_TOKEN || '0001'X || CK_TRUE ||,
 CKA_IBM_SECURE || '0001'X || CK_TRUE ||,
 CKA_LABEL /*|| 'llll'X || 'label' */ ;
GKP_Kyber_pub_attr_list =,
 '0006'X ||,
 CKA_CLASS || '0004'X || CKO_PUBLIC_KEY ||,
 CKA_KEY_TYPE || '0004'X || CKK_IBM_KYBER ||,
 CKA_TOKEN || '0001'X || CK_TRUE ||,
 CKA_IBM_SECURE || '0001'X || CK_TRUE ||,
 CKA_IBM_KYBER_MODE || D2C(LENGTH(DER_OID_KYBER_1024_R2),2) ||,
 DER_OID_KYBER_1024_R2 ||,
 CKA_LABEL /*|| 'llll'X || 'label' */ ;
GKP_Kyber_prv_attr_list =,
 '0005'X ||,
 CKA_CLASS || '0004'X || CKO_PRIVATE_KEY ||,
 CKA_KEY_TYPE || '0004'X || CKK_IBM_KYBER ||,
176 Transitioning to Quantum-Safe Cryptography on IBM Z

 CKA_TOKEN || '0001'X || CK_TRUE ||,
 CKA_IBM_SECURE || '0001'X || CK_TRUE ||,
 CKA_LABEL /*|| 'llll'X || 'label' */ ;
DVK_attr_list_ECDH =,
 '0004'X ||,
 CKA_CLASS || '0004'X || CKO_SECRET_KEY ||,
 CKA_IBM_SECURE || '0001'X || CK_TRUE ||,
 CKA_KEY_TYPE || '0004'X || CKK_GENERIC_SECRET ||,
 CKA_VALUE_LEN || '0004'X || '00000042'X ;
DVK_attr_list_Kyber =,
 '0004'X ||,
 CKA_CLASS || '0004'X || CKO_SECRET_KEY ||,
 CKA_IBM_SECURE || '0001'X || CK_TRUE ||,
 CKA_KEY_TYPE || '0004'X || CKK_AES ||,
 CKA_VALUE_LEN || '0004'X || '00000020'X ;
known_clear_text = COPIES('A',16);

my_token = Left('QSAFE.TEST.TOKEN',44) /* Replace this token handle */

/***/
/* Step 1.1 Generate an ECC key pair for Alice */
/***/
testN = 'ECALICE';
pub_key_attr_list = GKP_EC_pub_attr_list||D2C(LENGTH(testN),2)||testN;
prv_key_attr_list = GKP_EC_prv_attr_list||D2C(LENGTH(testN),2)||testN;
CALL CSFPGKP;
handle_EC_Pub_A = pub_key_object_handle;
handle_EC_Priv_A = prv_key_object_handle;

/***/
/* Step 2.2 Generate an ECC key pair for Bob */
/***/
testN = 'ECBOB';
pub_key_attr_list = GKP_EC_pub_attr_list||D2C(LENGTH(testN),2)||testN;
prv_key_attr_list = GKP_EC_prv_attr_list||D2C(LENGTH(testN),2)||testN;
CALL CSFPGKP;
handle_EC_Pub_B = pub_key_object_handle;
handle_EC_Priv_B = prv_key_object_handle;

/***/
/* Step 2.2 Generate a Kyber key pair for Bob */
/***/
testN = 'QSBOB';
pub_key_attr_list=GKP_Kyber_pub_attr_list||D2C(LENGTH(testN),2)||testN;
prv_key_attr_list=GKP_Kyber_prv_attr_list||D2C(LENGTH(testN),2)||testN;
CALL CSFPGKP;
handle_Kyb_Pub_B = pub_key_object_handle;
handle_Kyb_Priv_B = prv_key_object_handle;

/***/
/* Step 2.3 Derive a key using ECDH(HYBRID_NULL) with Bob's Private */
/* ECC key and Alice Public ECC key */
/***/
Appendix E. Creating a hybrid quantum-safe key exchange 177

testN = 'DRVGENSECB';
pub_EC_POINT = CSFPGAV(handle_EC_Pub_A,CKA_EC_POINT);
rule_array = 'EC-DH ';
attribute_list = DVK_attr_list_ECDH;
base_key_handle = handle_EC_Priv_B;
DVK_ParmsList =,
 CKD_IBM_HYBRID_NULL ||, /* KDF function code */
 '00000000'X ||, /* Optional data length */
 '0000000000000000'X ||, /* Optional data address */
 D2C(LENGTH(pub_EC_POINT),4) ||, /* Public value length */
 pub_EC_POINT; /* Public value */
CALL CSFPDVK;

handle_GenSec_B = target_key_handle;

/***/
/* Step 3.3 Derive a key using ECDH(HYBRID_NULL) with Alice's Private*/
/* ECC key and Bob's Public ECC key */
/***/
testN = 'DRVGENSECA';
pub_EC_POINT = CSFPGAV(handle_EC_Pub_B,CKA_EC_POINT);
rule_array = 'EC-DH ';
attribute_list = DVK_attr_list_ECDH;
base_key_handle = handle_EC_Priv_A;
DVK_ParmsList =,
 CKD_IBM_HYBRID_NULL ||, /* KDF function code */
 '00000000'X ||, /* Optional data length */
 '0000000000000000'X ||, /* Optional data address */
 D2C(LENGTH(pub_EC_POINT),4) ||, /* Public value length */
 pub_EC_POINT; /* Public value */
CALL CSFPDVK;
handle_GenSec_A = target_key_handle;

/***/
/* Step 3.4 Derive key using KYBER(HYBRID_SHA256), then encapsulate */
/* Bob's Public Kyber key */
/***/
testN = 'DRVSHAREDA';
rule_array = 'KYBER ';
attribute_list = DVK_attr_list_Kyber;
base_key_handle = handle_Kyb_Pub_B;

DVK_ParmsList =,
 '00000000'X ||, /* version */
 CK_IBM_KEM_ENCAPSULATE ||, /* mode */
 CKD_IBM_HYBRID_SHA256_KDF ||, /* kdf */
 CK_FALSE ||, /* prepend */
 COPIES('00'X,3) ||, /* reserved */
 D2C(0,4) ||, /* shared data len */
 D2C(1600,4) ||, /* cipher len (output) */
 handle_GenSec_A ||, /* gen secret key handle */
 COPIES('42'X,1600); /* buffer for cipher output */
178 Transitioning to Quantum-Safe Cryptography on IBM Z

CALL CSFPDVK;
CALL parse_Kyber_parmslist;
handle_SharedKey_A = target_key_handle;

/***/
/* Step 4.1 Derive key using KYBER(HYBRID_SHA256) using decapsulate */
/* with Bob's Private Kyber key */
/***/
testN = 'DRVSHAREDB';
rule_array = 'KYBER ';
attribute_list = DVK_attr_list_Kyber;
base_key_handle = handle_Kyb_Priv_B;
DVK_ParmsList =,
 '00000000'X ||, /* version */
 CK_IBM_KEM_DECAPSULATE ||, /* mode */
 CKD_IBM_HYBRID_SHA256_KDF ||, /* kdf */
 CK_FALSE ||, /* prepend */
 COPIES('00'X,3) ||, /* reserved */
 D2C(0,4) ||, /* shared data len */
 d2c(length(cphr),4) ||, /* cipher len (input) */
 handle_GenSec_B ||, /* gen secret key handle */
 cphr ; /* cipher from previous step */
CALL CSFPDVK;
handle_SharedKey_B = target_key_handle;

/***/
/* Encrypt some data with Alice's SharedKey */
/***/
testN = 'ENCSHAREDA';
rule_array = 'AES ECB ONLY ';
key_handle = handle_SharedKey_A
init_vector = '';
clear_text = known_clear_text;
CALL CSFPSKE;
SAY 'ciphertext('||testN||'): '||C2X(cipher_text);
cipher_text_SharedKey_A = cipher_text;

/***/
/* Encrypt some data with Bob's SharedKey */
/***/
 testN = 'ENCSHAREDB';
rule_array = 'AES ECB ONLY ';
key_handle = handle_SharedKey_B;
init_vector = '';
clear_text = known_clear_text;
CALL CSFPSKE;
SAY 'ciphertext('||testN||'): '||C2X(cipher_text);
cipher_text_SharedKey_B = cipher_text;

/***/
/* Verify cipher text is identical */
/***/
Appendix E. Creating a hybrid quantum-safe key exchange 179

IF cipher_text_SharedKey_B = cipher_text_SharedKey_A THEN
 SAY 'TESTCASE SUCCESSFUL'

GETOUT: ;
EXIT;
/***/
/* parse_Kyber_parmslist */
/***/
parse_Kyber_parmslist:
 PARSE VALUE DVK_ParmsList WITH ,
 ver +4 ,
 mode +4 ,
 kdf +4 ,
 pre +1 ,
 rsvd +3 ,
 shrdlen +4 ,
 cphrlen +4 ,
 gskH +44 ,
 remaining ;
 shrdlenD = C2D(shrdlen);
 cphrlenD = C2D(cphrlen);
 PARSE VALUE remaining WITH ,
 shrd +(shrdlenD) ,
 cphr +(cphrlenD) ,
 extra ;
 verP = "'"||C2X(ver)||"'X (version "||C2D(ver)||")";
 modeP = "'"||C2X(mode)||"'X";
 SELECT;
 WHEN mode = CK_IBM_KEM_ENCAPSULATE THEN
 modeP = modeP||" (CK_IBM_KEM_ENCAPSULATE)";
 WHEN mode = CK_IBM_KEM_DECAPSULATE THEN
 modeP = modeP||" (CK_IBM_KEM_DECAPSULATE)";
 OTHERWISE
 modeP = modeP||" (unknown)";
 END;
 kdfP = "'"||C2X(kdf)||"'X";
 SELECT;
 WHEN kdf = CKD_IBM_HYBRID_SHA1_KDF THEN
 kdfP = kdfP||" (CKD_IBM_HYBRID_SHA1_KDF)";
 WHEN kdf = CKD_IBM_HYBRID_SHA224_KDF THEN
 kdfP = kdfP||" (CKD_IBM_HYBRID_SHA224_KDF)";
 WHEN kdf = CKD_IBM_HYBRID_SHA256_KDF THEN
 kdfP = kdfP||" (CKD_IBM_HYBRID_SHA256_KDF)";
 WHEN kdf = CKD_IBM_HYBRID_SHA384_KDF THEN
 kdfP = kdfP||" (CKD_IBM_HYBRID_SHA384_KDF)";
 WHEN kdf = CKD_IBM_HYBRID_SHA512_KDF THEN
 kdfP = kdfP||" (CKD_IBM_HYBRID_SHA512_KDF)";
 OTHERWISE
 kdfP = kdfP||" (unknown)";
 END;
 preP = "'"||C2X(pre)||"'X";
 SELECT;
 WHEN pre = CK_FALSE THEN
 preP = preP||" (don't prepend)";
180 Transitioning to Quantum-Safe Cryptography on IBM Z

 WHEN pre = CK_TRUE THEN
 preP = preP||" (do prepend)";
 OTHERWISE
 preP = preP||" (unknown)";
 END;
 rsvdP = "'"||C2X(rsvd)||"'X";
 shrdlenP = "'"||C2X(shrdlen)||"'X ("||shrdlenD||")";
 cphrlenP = "'"||C2X(cphrlen)||"'X ("||cphrlenD||")";
 gskHP = "'"||gskH||"'";

RETURN;

/* --- */
/* PKCS #11 Generate Key Pair */
/* */
/* Use the PKCS #11 Generate Key Pair callable service to generate */
/* an RSA, DSA, Elliptic Curve, Diffie-Hellman, Dilithium (LI2) or */
/* Kyber key pair. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */
CSFPGKP:
return_code = 'FFFFFFFF'X;
reason_code = 'FFFFFFFF'X;
token_handle = my_token;
rule_array_count = '00000000'X;
rule_array = '';
/* pub_key_attr_list is set by caller */
pub_key_attr_list_length = D2C(LENGTH(pub_key_attr_list),4);
pub_key_object_handle = COPIES(' ',44);
/* prv_key_attr_list is set by caller */
prv_key_attr_list_length = D2C(LENGTH(prv_key_attr_list),4);
prv_key_object_handle = COPIES(' ',44);
ADDRESS LINKPGM 'CSFPGKP',
 'return_code' 'reason_code' ,
 'exit_data_length' 'exit_data' ,
 'token_handle' ,
 'rule_array_count' 'rule_array' ,
 'pub_key_attr_list_length' 'pub_key_attr_list' ,
 'pub_key_object_handle' ,
 'prv_key_attr_list_length' 'prv_key_attr_list' ,
 'prv_key_object_handle' ;
IF (return_code \= ExpRC) | (reason_code \= ExpRS) THEN
 DO;
 SAY 'GKP('||testN||'): rc/rs='||C2X(return_code)||'/'||,
 C2X(reason_code);
 SIGNAL GETOUT;
 END;
Else
 DO;
 SAY 'GKP('||testN||'): successful';
 SAY ' pub_key_object_handle = "'||pub_key_object_handle||'"';
 SAY ' prv_key_object_handle = "'||prv_key_object_handle||'"';
 END;
Appendix E. Creating a hybrid quantum-safe key exchange 181

RETURN;

/* --- */
/* PKCS #11 Derive Key */
/* */
/* Use the PKCS #11 Derive Key callable service to generate a new */
/* secret key object from an existing key object. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */
CSFPDVK:
return_code = 'FFFFFFFF'X;
reason_code = 'FFFFFFFF'X;
rule_array_count = D2C(TRUNC((LENGTH(rule_array)+7)/8),4);
/* rule_array (properly padded) is set by caller */
/* attribute_list is set by caller */
attribute_list_length = D2C(LENGTH(attribute_list),4);
/* base_key_handle is set by caller */
/* DVK_ParmsList is set by caller */
DVK_ParmsList_length = D2C(LENGTH(DVK_ParmsList),4);
target_key_handle = COPIES('DD'X,44);
ADDRESS LINKPGM 'CSFPDVK',
 'return_code' 'reason_code' ,
 'exit_data_length' 'exit_data' ,
 'rule_array_count' 'rule_array' ,
 'attribute_list_length' 'attribute_list' ,
 'base_key_handle' ,
 'DVK_ParmsList_length' 'DVK_ParmsList' ,
 'target_key_handle' ;
IF (return_code \= ExpRC) | (reason_code \= ExpRS) THEN
 DO;
 SAY 'DVK('||testN||'): rc/rs='||C2X(return_code)||'/'||,
 C2X(reason_code);
 SIGNAL GETOUT;
 END;
Else
 DO;
 SAY 'DVK('||testN||'): successful';
 SAY ' target_key_handle = "'||target_key_handle||'"';
 END;
RETURN;

/* --- */
/* PKCS #11 Secret Key Encrypt */
/* */
/* Use the PKCS #11 Secret Key Encrypt callable service to encipher*/
/* data using a symmetric key. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */
CSFPSKE:
return_code = '99999999'X;
reason_code = '99999999'X;
rule_array_count = D2C(TRUNC((LENGTH(rule_array)+7)/8),4);
182 Transitioning to Quantum-Safe Cryptography on IBM Z

/* rule_array (properly padded) is set by caller */
/* key_handle is set by caller */
init_vector_length = D2C(LENGTH(init_vector),4);
/* init_vector is set by caller */
chain_data_length = '00000080'X
chain_data = COPIES('00'X,C2D(chain_data_length));
clear_text_length = D2C(LENGTH(clear_text),4);
/* clear_text is set by caller */
clear_text_id = '00000000'X;
cipher_text_length = D2C(C2D(clear_text_length)+16,4);
cipher_text = COPIES('00'X,C2D(cipher_text_length));
cipher_text_id = '00000000'X;
ADDRESS LINKPGM 'CSFPSKE' ,
 'return_code' 'reason_code' ,
 'exit_data_length' 'exit_data' ,
 'rule_array_count' 'rule_array' ,
 'key_handle' ,
 'init_vector_length' 'init_vector' ,
 'chain_data_length' 'chain_data' ,
 'clear_text_length' 'clear_text' ,
 'clear_text_id' ,
 'cipher_text_length' 'cipher_text' ,
 'cipher_text_id' ;
IF (return_code \= ExpRC) | (reason_code \= ExpRS) THEN
 DO;
 SAY 'SKE('||testN||'): rc/rs='||C2X(return_code)||'/'||,
 C2X(reason_code);
 SIGNAL GETOUT;
 END;
Else
 SAY 'SKE('||testN||'): successful';
cipher_text = LEFT(cipher_text,C2D(cipher_text_length));
RETURN;

/* --- */
/* PKCS #11 Get Attribute Value */
/* */
/* Use the PKCS #11 Get Attribute Value callable service (CSFPGAV) */
/* to retrieve the attributes of an object. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */
CSFPGAV:
PARSE ARG RATTR.handle,RATTR.attr;
shortHandle = LEFT(RATTR.handle,41);
return_code = 'FFFFFFFF'X;
reason_code = 'FFFFFFFF'X;
rule_array_count = '00000000'X;
handle = RATTR.handle;
rule_array = '';
attr_list_length = D2C(32000,4);
attr_list = COPIES('FF'X,32000);
ADDRESS LINKPGM 'CSFPGAV' ,
 'return_code' 'reason_code' ,
 'exit_data_length' 'exit_data' ,
Appendix E. Creating a hybrid quantum-safe key exchange 183

 'handle' ,
 'rule_array_count' 'rule_array' ,
 'attr_list_length' 'attr_list' ;
IF (return_code \= ExpRC) | (reason_code \= ExpRS) THEN
 DO;
 SAY 'CSFPGAV('||shortHandle||'): rc = '||C2X(return_code)||,
 ' rs = '||C2X(reason_code);
 SIGNAL GETOUT;
 END;
attr_list = LEFT(attr_list,C2D(attr_list_length));
number_attributes = C2D(LEFT(attr_list,2));
attr_list = SUBSTR(attr_list,3);
DO n = 1 TO number_attributes;
 attr_number = LEFT(attr_list,4);
 attr_list = SUBSTR(attr_list,5);
 attr_val_len = C2D(LEFT(attr_list,2));
 attr_list = SUBSTR(attr_list,3);
 attr_value = LEFT(attr_list,attr_val_len);
 attr_list = SUBSTR(attr_list,attr_val_len+1);
 IF (attr_number = RATTR.attr) THEN
 SIGNAL DONE_W_READ_ATTR;
END;
attr_value = 'BADBADBAD';
DONE_W_READ_ATTR: ;
RETURN attr_value;

TCSETUP:

DER_OID_KYBER_1024_R2 = '060B2B0601040102820B050404'X;
secp521r1 = '06052b81040023'x

CKK_IBM_KYBER = '80010024'X;
CKK_EC = '00000003'X
CKK_GENERIC_SECRET = '00000010'X
CKK_AES = '0000001F'X

CKO_PUBLIC_KEY = '00000002'X
CKO_PRIVATE_KEY = '00000003'X
CKO_SECRET_KEY = '00000004'X

CKA_CLASS = '00000000'X
CKA_TOKEN = '00000001'X
CKA_IBM_KYBER_MODE = '8000000E'X
CKA_LABEL = '00000003'X
CKA_IBM_SECURE = '80000006'X
CKA_EC_PARAMS = '00000180'X
CKA_EC_POINT = '00000181'X
CKA_VALUE_LEN = '00000161'X
CKA_KEY_TYPE = '00000100'X

CKD_IBM_HYBRID_NULL = '80000001'X;
CKD_IBM_HYBRID_SHA1_KDF = '80000002'X;
CKD_IBM_HYBRID_SHA224_KDF = '80000003'X;
CKD_IBM_HYBRID_SHA256_KDF = '80000004'X;
CKD_IBM_HYBRID_SHA384_KDF = '80000005'X;
184 Transitioning to Quantum-Safe Cryptography on IBM Z

CKD_IBM_HYBRID_SHA512_KDF = '80000006'X;

CK_IBM_KEM_ENCAPSULATE = '00000001'X;
CK_IBM_KEM_DECAPSULATE = '00000002'X;

CK_TRUE = '01'x
CK_FALSE = '00'x
return

NOVALUE:
SAY "Condition NOVALUE was raised."
SAY CONDITION("D") "variable was not initialized."
SAY sigl||': '||SOURCELINE(sigl)
EXIT;
Appendix E. Creating a hybrid quantum-safe key exchange 185

186 Transitioning to Quantum-Safe Cryptography on IBM Z

Appendix F. Generating a one-way hash

The examples in this appendix are REXX executables that can be used to generate an
SHA-512 one-way hash, using CCA and PKCS#11.

This appendix includes the following topics:

� F.1, “CCA SHA-512 one-way hash REXX sample” on page 188
� F.2, “PKCS #11 SHA-512 one-way hash REXX sample” on page 189

F

© Copyright IBM Corp. 2022. 187

F.1 CCA SHA-512 one-way hash REXX sample

A CCA SHA-512 one-way hash REXX sample is shown in Example F-1.

Example F-1 CCA SHA-512 one-way hash REXX sample

/* Rexx */

/*---*/
/* Generate SHA-512 hash using CCA One-Way Hash service */
/*---*/

 /* expected results */
 ExpRc = '00000000'x
 ExpRs = '00000000'x

 BOWH_Rule_Array = 'SHA-512 ' || 'ONLY ' ;
 BOWH_Text = '0123456789ABCDEF';
 BOWH_Hash = copies('00'x, 64);
 BOWH_Chain_Vector = copies('00'x,128);

 call CSNBOWH

 say 'BOWH Hash: ' c2x(BOWH_Hash)

 Exit

/* --- */
/* One-Way Hash Generate */
/* */
/* Used to generate a one-way hash */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */

CSNBOWH:

 /* initialize parameter list */
 BOWH_rc = 'FFFFFFFF'x ;
 BOWH_rs = 'FFFFFFFF'x ;
 BOWH_Exit_Length = '00000000'x ;
 BOWH_Exit_Data = '00000000'x ;
 BOWH_Rule_Count = d2c(length(BOWH_Rule_Array)/8,4);
 BOWH_Text_Length = d2c(length(BOWH_Text),4);
 BOWH_Chain_Vector_Length = d2c(length(BOWH_Chain_Vector),4);
 BOWH_Hash_Length = d2c(Length(BOWH_Hash),4);

 /* call CSNBOWH */
 address linkpgm 'CSNBOWH' ,
 'BOWH_rc' 'BOWH_rs' ,
 'BOWH_Exit_Data_Length' 'BOWH_Exit_Data' ,
 'BOWH_Rule_Count' 'BOWH_Rule_Array' ,
 'BOWH_Text_Length' 'BOWH_Text' ,
 'BOWH_Chain_Vector_Length' 'BOWH_Chain_Vector' ,
 'BOWH_Hash_Length' 'BOWH_Hash' ;
188 Transitioning to Quantum-Safe Cryptography on IBM Z

 if (BOWH_rc \= ExpRc | BOWH_rs \= ExpRs) then
 say 'BOWH failed: rc =' c2x(BOWH_rc) 'rs =' c2x(BOWH_rs) ;
 else
 say 'BOWH successful: rc =' c2x(BOWH_rc) 'rs =' c2x(BOWH_rs) ;

return

F.2 PKCS #11 SHA-512 one-way hash REXX sample

A PKCS #11 SHA-512 one-way hash REXX sample is shown in Example F-2.

Example F-2 PKCS #11 SHA-512 one-way hash REXX sample

/* Rexx */

/*---*/
/* Generate SHA-512 hash using PKCS #11 One-Way Hash service */
/*---*/

 /* expected results */
 ExpRc = '00000000'x
 ExpRs = '00000000'x

 /* Call PKCS#11 One-Way Hash with generated token */
 POWH_Rule_Array = 'SHA-512 ' || 'ONLY ' ;
 POWH_Text = '0123456789ABCDEF';
 POWH_Hash = copies('00'x, 64);
 POWH_Chain_Vector = copies('00'x,128);
 POWH_Handle = Left('QSAFE.TEST.TOKEN',44)

 call CSNPOWH

 say 'POWH Hash: ' c2x(POWH_Hash)

 Exit
/* --- */
/* PKCS #11 One-Way Hash, Sign, or Verify */
/* */
/* Use the PKCS #11 One-Way Hash, Sign, or Verify callable service */
/* to generate a one-way hash on specified text, sign specified */
/* text, or verify a signature on specified text. */
/* */
/* See the ICSF Application Programmer's Guide for more details. */
/* --- */

CSNPOWH:

 /* initialize parameter list */
 POWH_RC = 'FFFFFFFF'x ;
 POWH_RS = 'FFFFFFFF'x ;
Appendix F. Generating a one-way hash 189

 POWH_Exit_Length = '00000000'x ;
 POWH_Exit_Data = '' ;
 POWH_Rule_Count = d2c(length(POWH_Rule_Array)/8,4);
 POWH_Text_Length = d2c(length(POWH_Text),4);
 POWH_Text_id = '00000000'x ;
 POWH_Chain_Vector_Length = d2c(length(POWH_Chain_Vector),4);
 POWH_Hash_Length = D2C(Length(POWH_Hash),4);

 /* call CSNPOWH */
 address linkpgm 'CSFPOWH' ,
 'POWH_RC' 'POWH_RS' ,
 'POWH_Exit_Length' 'POWH_Exit_Data' ,
 'POWH_Rule_Count' 'POWH_Rule_Array' ,
 'POWH_Text_Length' 'POWH_Text' ,
 'POWH_Text_id' ,
 'POWH_Chain_Vector_Length' 'POWH_Chain_Vector' ,
 'POWH_Handle' ,
 'POWH_Hash_Length' 'POWH_Hash' ;

 if (POWH_rc \= ExpRc | POWH_rs \= ExpRs) then
 say 'POWH failed: rc =' c2x(POWH_rc) 'rs =' c2x(POWH_rs) ;
 else
 say 'POWH successful: rc =' c2x(POWH_rc) 'rs =' c2x(POWH_rs) ;

 return
190 Transitioning to Quantum-Safe Cryptography on IBM Z

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

Transitioning to Quantum
-Safe Cryptography on IBM

 Z

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738460680

SG24-8525-00

®

https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Cryptography in the quantum computing era
	1.1 When will quantum computers break cryptography
	1.1.1 Business risks
	1.1.2 Quantum threats and implications on data and identity

	1.2 Why are quantum computers a threat
	1.2.1 Cryptography overview

	1.3 Impact of Shor’s and Grover’s algorithms
	1.4 Cryptographic vulnerabilities possible with quantum computers
	1.5 New algorithms to counter CRQC attacks
	1.5.1 Quantum-safe algorithms

	1.6 Quantum-safe capabilities with IBM Z
	1.6.1 Quantum-safe infrastructure in IBM z16
	1.6.2 Quantum-safe API functions available to application programs

	Chapter 2. The journey to quantum protection
	2.1 Quantum-safe cryptographic experiences
	2.1.1 Educating the team
	2.1.2 Building a cryptographic inventory
	2.1.3 Creating a roadmap
	2.1.4 Designing and running with cryptographic agility in mind
	2.1.5 Quantum-safe journey in review

	2.2 Starting the quantum protection journey
	2.2.1 Following industry guidance
	2.2.2 Start now
	2.2.3 Building your inventory
	2.2.4 Knowing your options
	2.2.5 Incorporate cryptographic agility

	Chapter 3. Using quantum-safe cryptography
	3.1 Protecting sensitive data
	3.1.1 Problem statement
	3.1.2 Solving this challenge by using IBM z16 capabilities
	3.1.3 Industry applications

	3.2 Use case: Sharing keys securely
	3.2.1 Problem statement
	3.2.2 Solving this challenge with IBM z16 capabilities
	3.2.3 Industry applications

	3.3 Use case: Message integrity and secure logging
	3.3.1 Problem statement
	3.3.2 Solving the integrity challenge with IBM z16 capabilities
	3.3.3 Industry applications

	3.4 Proof of authorship
	3.4.1 Problem statement
	3.4.2 Solving this challenge with IBM z16 capabilities

	Chapter 4. Getting ready for quantum-safe cryptography
	4.1 IBM Z cryptographic components overview
	4.1.1 IBM Z cryptographic hardware components
	4.1.2 IBM Z cryptographic software components
	4.1.3 Minimum hardware and software for quantum-safe cryptography support

	4.2 Steps towards quantum protection
	4.2.1 Discovering and classifying the data
	4.2.2 Establishing a cryptographic inventory
	4.2.3 Considering cryptographic agility
	4.2.4 Adopting quantum-safe cryptography
	4.2.5 Where to find help at IBM

	4.3 Best practices, mitigation options, and tools
	4.3.1 ICSF best practices
	4.3.2 Mitigation options
	4.3.3 Key management tools

	Chapter 5. Creating a cryptographic inventory
	5.1 Collection tools overview
	5.2 Using ICSF cryptographic usage tracking
	5.2.1 Configuring SMF for ICSF cryptographic usage tracking
	5.2.2 Enabling cryptographic usage tracking within ICSF
	5.2.3 Formatting cryptographic usage statistics records

	5.3 Using IBM Application Discovery and Delivery Intelligence
	5.3.1 Configuring IBM AD Build Client for ICSF crypto analysis
	5.3.2 Interpreting IBM AD Build Client file results
	5.3.3 Interpreting the CRYPTO CAPIResolutions.json resolutions file
	5.3.4 Extending the CRYPTO CAPIResolutions.json resolutions file

	5.4 Using IBM Crypto Analytics Tool
	5.4.1 IBM CAT overview
	5.4.2 Reported elements
	5.4.3 Monitoring functions
	5.4.4 Crypto Analytics Tool use case
	5.4.5 Activating the policy
	5.4.6 Checking the policy
	5.4.7 Applying the policy to a snapshot

	5.5 Using IBM z/OS Encryption Readiness Technology
	5.5.1 Enabling zERT for zERT Network Analyzer
	5.5.2 Using IBM zERT Network Analyzer
	5.5.3 Monitoring data in-transit by using zERT

	Chapter 6. Deploying quantum-safe capabilities
	6.1 Quantum-safe algorithm artifacts
	6.2 Converting your PKDS to KDSRL format
	6.3 Ensuring the environment is ready
	6.4 Quantum-safe key generation
	6.4.1 Generating an AES 256-bit key by using ICSF CCA services
	6.4.2 Generating an AES 256-bit key by using ICSF PKCS #11 services
	6.4.3 Generating CRYSTALS-Dilithium key by using ICSF CCA services
	6.4.4 Generating CRYSTALS-Dilithium key by using ICSF PKCS #11 services
	6.4.5 Generating CRYSTALS-Kyber key by using ICSF CCA services
	6.4.6 Generating CRYSTALS-Kyber key by using ICSF PKCS #11 services

	6.5 Quantum-safe encryption
	6.5.1 Translating ciphertext to AES 256-bit encryption by using ICSF CCA services
	6.5.2 Translating ciphertext to AES 256-bit encryption by using ICSF PKCS #11 services

	6.6 Quantum-safe digital signatures
	6.6.1 Generating and verifying CRYSTALS-Dilithium digital signature by using ICSF CCA services
	6.6.2 Generating and verifying CRYSTALS-Dilithium digital signature by using ICSF PKCS #11 services
	6.6.3 Using digital signatures to protect SMF records

	6.7 Quantum-safe hybrid key exchange
	6.7.1 Performing a hybrid quantum-safe key exchange scheme by using ICSF CCA services
	6.7.2 Performing a hybrid quantum-safe key exchange scheme by using ICSF PKCS #11 services

	6.8 Quantum-safe hashing
	6.8.1 Hashing a message with the SHA-512 algorithm by using ICSF CCA services
	6.8.2 Hashing a message with the SHA-512 algorithm by using ICSF PKCS #11 services

	6.9 Validating your quantum-safe transition

	Appendix A. Finding cryptographic attributes
	A.1 Tools for cryptographic inventory
	A.2 Investigation process
	A.2.1 Starting with application source code scan from IBM ADDI
	A.2.2 Starting with a policy check in the IBM CAT
	A.2.3 Starting with an application that you know
	A.2.4 Starting with SMF record type 82 reports

	A.3 Process that was used
	A.3.1 Examples of finding key usage events
	A.3.2 Examples of finding key lifecycle events
	A.3.3 Summary

	Appendix B. Generating quantum-safe keys
	B.1 CCA AES 256-bit key generation REXX sample
	B.2 PKCS #11 AES 256-bit key generation REXX sample
	B.3 CCA CRYSTALS-Dilithium key pair generation REXX sample
	B.4 PKCS #11 CRYSTALS-Dilithium key pair generation REXX sample
	B.5 CCA CRYSTALS-Kyber key pair generation REXX sample
	B.6 PKCS #11 CRYSTALS-Kyber key pair generation REXX sample

	Appendix C. Translating plain text into cipher text
	C.1 CCA ciphertext translation REXX sample
	C.2 PKCS #11 ciphertext translation REXX sample

	Appendix D. Generating and verifying digital signatures
	D.1 CCA CRYSTALS-Dilithium digital signature generation and verification REXX sample
	D.2 PKCS #11 CRYSTALS-Dilithium digital signature generation and verification REXX sample

	Appendix E. Creating a hybrid quantum-safe key exchange
	E.1 CCA hybrid quantum-safe key exchange scheme REXX sample
	E.2 PKCS #11 hybrid quantum-safe key exchange scheme REXX sample

	Appendix F. Generating a one-way hash
	F.1 CCA SHA-512 one-way hash REXX sample
	F.2 PKCS #11 SHA-512 one-way hash REXX sample

	Back cover

