
Helping HPC Users Specify Job Memory
Requirements via Machine Learning

Eduardo R. Rodrigues1, Renato L. F. Cunha1, Marco A. S. Netto1, Michael Spriggs2
1IBM Research
2IBM Systems

Abstract—Resource allocation in High Performance Comput-
ing (HPC) settings is still not easy for end-users due to the wide
variety of application and environment configuration options.
Users have difficulties to estimate the number of processors and
amount of memory required by their jobs, select the queue and
partition, and estimate when job output will be available to
plan for next experiments. Apart from wasting infrastructure
resources by making wrong allocation decisions, overall user
response time can also be negatively impacted. Techniques that
exploit batch scheduler systems to predict waiting time and
runtime of user jobs have already been proposed. However, we
observed that such techniques are not suitable for predicting job
memory usage. In this paper we introduce a tool to help users
predict their memory requirements using machine learning. We
describe the integration of the tool with a batch scheduler system,
discuss how batch scheduler log data can be exploited to generate
memory usage predictions through machine learning, and present
results of two production systems containing thousands of jobs.

I. INTRODUCTION

Batch schedulers such as IBM Spectrum LSF, TORQUE,
PBS, among others rely on users specifying job requirements.
Examples of user input are amount of memory, number of
processors, and requested time. These values are hard for the
user to specify due to various options of job and environment
configurations and intricate effects of these values on overall
job response time [1, 2]. Job specifications and their impact on
scheduling decisions have been vastly investigated by several
research groups [3, 4, 5, 6].

Parameters such as amount of memory and number of
processors, for instance, impact the performance of the user
application but also scheduler dynamics and overall cluster
utilization. If users ask for a certain amount of memory but
use much less, resources are wasted and other users cannot
benefit of early cluster access. Estimations on how long jobs
will wait in a queue and their execution time have a direct
impact on users’ planning [7].

Systems such as XSEDE1 utilize prediction techniques for
queue waiting time. From our experiments, we observed that
applying those techniques to predict job memory requirement
does not produce the best predictions. In this paper we
introduce a tool to assist users predicting memory usage using
batch scheduler logs—the tool could also be used to predict
other features related to resource allocation in HPC envi-
ronments. The tool is based on machine learning techniques

Author preprint. To appear in the Proceedings of the Third Annual Work-
shop on HPC User Support Tools (IEEE).

1XSEDE - https://www.xsede.org/

and is invoked through command line interface, and can be
extended to support the existing LSF GUI (IBM Spectrum
LSF Application Center). The contributions of the paper are
therefore:
• Machine learning based tool to predict resource allocation

features for HPC environments, such as job memory
usage (§ II);

• Evaluation of the tool to understand how different ma-
chine learning techniques perform in the task of predict-
ing memory usage (§ III).

We describe in details the design and implementation of the
tool and evaluated it in a variety of scenarios with workloads
from real HPC settings.

II. PREDICTION TOOL

In this section, we describe the architecture of the tool and
the machine learning techniques used. We particularly describe
how the data is obtained and what preprocessing is required.
We also present the training and validation scheme we created
and the voting system we devised to combine the predictions
of top techniques in a single predictor.

A. System Description

Figure 1 illustrates the data flow in our tool and the
three main components: data collection and conversion, model
construction, and predictions. The first step in order to make
predictions is to collect historical data. Our tool interfaces
directly with the LSF batch scheduler to collect relevant data
to predict run time, wait time and memory usage. In this paper,
we only discuss memory usage predictions though.

There are two modes of collection: on-line and off-line.
In the on-line mode, the tool collects historical data while
the jobs are submitted to the cluster. It pulls periodically
the relevant data from LSF’s memory using the public LSF
API. In the off-line mode, the tool collects data from the
databases that LSF stores for its own statistics. This last
mode is suitable for exploiting the data the users have already
accumulated throughout the history of the system. This mode
is also important while testing the tool: it allows a fast way
to generate data to be used by the predictors. However, there
are some statistics that LSF does not persist and can only be
collected in the on-line mode.

Two types of data are collected: features and labels. Features
describe the conditions under which an event happened, and
labels describe what happened, in a dimension of interest.

ar
X

iv
:1

61
1.

02
90

5v
1

 [
cs

.D
C

]
 9

 N
ov

 2
01

6

Fig. 1. High-level view of the tool’s operation with three main components. The component in the left handles data capture and persistence and runs as a
daemon. The middle component loads the persisted data and trains models asynchronously. The component in the right is the interface with the world and
handles user requests.

Specifically, our features correspond to characteristics of the
jobs, such as user id, number of requested processors, working
directory, and so on. All of which are known data at job sub-
mission time. The label is the amount of memory effectively
used and is only available after the job finishes.

In our tool we collect a wide range of features. We pre-
process these features and store them in a separate embedded
database. This pre-processing stage transforms the raw features
into a format that is more suitable for the machine learning
techniques we use. For example, we transform text features,
such as working directory path, into a numeric feature (a
foreign key to a features table). In addition to that, we
augment the data by including some derived features, such
as submission weekday.

Even though many features are collected, not all of them
need to be always used. We implemented a configurable
selector that allows the user to experiment with different sets
of features. In Figure 1 this is represented by the arrow
connecting the SQLite database in the data collection process
to the data conversion component in the prediction request
handler. Being written in this way, in case new features should
be used to predict a given label, the user only needs to
update the row related to that label in the database. One could
perform feature selection [8] for determining the best subset
of features to be used for each label. The features we used in
our experiments are shown in Table I.

The label is the maximum memory used. However, instead
of treating the prediction as a regression, we placed the label
into bins and transformed the prediction into a classification
problem. In addition to simplifying the evaluation, one reason
for discretizing memory usage is that it helps scheduling per-
formance. If we use the discretized memory usage predictions
directly from the tool, then the scheduler has fewer unique
resource requirements to deal with. In our experiments we
used bins of size 512MiB.

During prediction, the tool obtains features and labels of a

set of jobs from the database. This set is a sliding window
that contains the most recent jobs in the database. The size
of the window is adjustable, and, in principle, could be
optimized, i.e. the size of the window could be adjusted to
improve prediction. In our experiments, however, we used a
fixed window of 10,000 entries. In this step, the tool also
creates dummy variables for the categorical variables by using
one-hot encoding [9]. Moreover, for some machine learning
techniques, this step also normalizes the numerical features, so
that features with high variability do not have more influence
in the prediction.

The features and labels obtained in the previous step are
divided in two subsets. One for training and the other for
validation. The training set is composed of 9,000 entries and
the remaining 1,000 entries are used to validate the trained
models. Each one of the methods we describe in the next
section is trained with the training set and evaluated with the
validation set. The metric used to evaluate is accuracy, i.e. the
percentage of correctly classified samples. Each trained model
is then persisted to disk so that the prediction step can use
them asynchronously. The computed accuracy in the validation
set is used to sort the models from best performing to the
worst performing and is also used as a weight in the method
described below.

In order to issue the final prediction, the tool performs a
poll of the top predicting methods, ranked by the validation
accuracy. In our experiments, we use the top four, but one
can choose any number, including all methods. Each method
is used to make a prediction of the query job and each
method votes for that prediction. The weights obtained from
the validation set are used to give more priority to methods
that performed better in the validation phase. One could use
no weights, but in case of a tie there would be no way to
decide which output to choose, and choosing randomly could
result in a low accuracy choice.

At prediction time, when a user query arrives, the tool

TABLE I
DESCRIPTION OF THE FEATURES USED IN THE PREDICTORS.

Feature Type Description

User ID Category User who submitted the job
Group ID Category User group that submitted the job
Queue ID Category Number of the queue the job has been submitted to
Working directory Category Directory where the job executes
ResReq Category Resources requested (e.g. architecture type, GPU)
Command Category Command executed
Priority Number User priority
Submission time Number Time at which the job was submitted
Requested time Number Amount of time requested to execute the job
Requested processors Number Number of processors requested at the submission time
Weekday Number Day of the week in which the job was submitted
Time since midnight Number Time of the day at which the job was submitted

consults the database to convert the query parameters to
the format expected by the models. For example, it queries
the database to obtain the key of the job’s current working
directory. Then, the trained models are loaded and predictions
are made. After that, each model votes and the final estimate
is issued.

B. Prediction Techniques

In this section we describe the machine learning algorithms
implemented in our tool. We have used four methods that
are further described below: Support Vector Machines (SVMs)
with Linear and Radial Basis Function (RBF) kernels (svm-1
and svm-2), Random Forests (rforest), Multilayer Perceptrons
(MLPs) (mlp-1 and mlp-2), and k Nearest Neighbors (kNN)
(knn-1 and knn-2).

1) Support Vector Machines: SVMs [10] are machine
learning algorithms originally proposed for two-group classifi-
cation problems that use kernel methods to map input vectors
to (possibly) non-linear high-dimension feature spaces. In our
tool we do multi label classification by using a one versus
all approach. We always maintain two SVM models: (1) one
that uses a linear kernel and regularization constant C = 0.01,
and (2) another that is the result of using cross validation to
select the best model from the parameters found in Table II.
In the table, sample influence (γ) refers to the γ term in the
RBF kernel, defined as exp

(
−γ |x− x′|2

)
, and determines

the influence a single training example has in the optimization
process.

TABLE II
PARAMETER SPACE SEARCHED FOR FINDING THE BEST PERFORMING

SVM MODEL.

Kernel Regularization (C) Sample influence (γ)

Linear 0.1, 1, 10, 100 −
RBF 0.1, 1, 10, 100 1× 10−3, 1× 10−4

2) Random Forests: Random Forests [11] are models that
combine the predictions of several randomized decision trees
that are built with bootstrap samples from the training set. In
our implementation the forests use 20 trees that choose which
nodes to split based on the information gain criterion [12].

3) Multilayer Perceptron: An MLP is a feed-forward fully-
connected neural network. In our tool we built two such
networks: (1) a fixed three-layer network with layer sizes
128, 64 and 32 that used Stochastic Gradient Descent (SGD)
and (2) a network whose parameters are obtained by means
of cross-validation in the training set. The parameters used
for cross-validation are shown in Table III. In the table,
SGDNM means Stochastic Gradient Descent with Nesterov’s
Momentum [13, 14]. The β1 and β2 parameters found in the
table are only used by the Adam algorithm [15].

TABLE III
PARAMETER SPACE SEARCHED FOR FINDING THE BEST PERFORMING MLP

MODEL.

Layer sizes (256, 128, 64, 32), (128, 64, 32), (256, 64,
32)

Optimization algorithm SGDNM [13], Adam [15], L-BFGS
Learning rate update Constant, inverse scaling
Shuffle True, False
Activation function tanh
Regularization term (α) 0.01, 0.001, 0.0001
First moment decay (β1) 0.9
Second moment decay (β2) 0.999

4) k Nearest Neighbors: k Nearest Neighbors (kNN) is a
learning method that uses the k closest examples in the training
set to make a prediction. In our tool we implemented two
modes of operation: (1) regular voting-based classification and
(2) a regression-based prediction service [16] that was adapted
to return the bin closest to the predicted value. Both models
used k = 5.

C. Using the prediction tool

In this initial implementation the tool is provided as a
command-line binary called lspredict. To ease the bur-
den on users having to learn a new command-line tool,
lspredict was implemented to support the same syntax of
bsub, the LSF command used for job submission. Hence, to
make a prediction, the user just has to prepend lspredict
to her job submission command.

Internally, lspredict takes the user-provided command
and modifies it to include the -H flag, which makes the job
transition to a suspended state until explicitly resumed by a
user. After this fake job is submitted, lspredict fetches the

job’s representation from LSF, which is then used to make a
prediction. After a prediction is made, the fake job is killed.

III. EVALUATION

In this section, we describe the setup to evaluate the
performance of the proposed tool; i.e. to predict job memory
usage when users submit their jobs to a cluster. For this, we
used data from two real production systems. Moreover, we
present the results compared to a base line performance, that
is the mode of the training set. Finally, we discuss why the
combination of predictors may be the best option for predicting
memory usage.

A. Environment Setup

We used two systems to evaluate our tool. One of them is
a 26-node POWER8 cluster, used by IBM Research division,
and the other is a production system composed of 2,128 x86
nodes.

The jobs in these systems are a mix of multi- and single-host
applications. The applications from the POWER8 cluster have
various characteristics as they come from different areas such
as big data, cognitive computing, and more traditional HPC
workloads, such as energy production models. The x86 system
runs production applications, which are routinely executed
by users. We selected these two systems as they represent
two types of workloads: one more varied and the other more
regular.

We analyzed the performance of the tool with 25,000 jobs
of each system, in 5 segments of 5,000 jobs each. For each
segment we trained the models with 9,000 jobs and validated
them with 1,000 jobs, as previously described. It is important
to notice that it is not enough to merely have disjoint sets for
training and testing for correct evaluation. We need to consider
the temporal relationship between jobs. Maximum memory
used is a piece of information that is only available once a
job has finished. Therefore the training set must only include
finished jobs by the time the current testing job is evaluated.
This will naturally occur in production usage of the tool, but
care must be taken when evaluating a prediction algorithm
using the tool in off-line mode.

It is possible to iterate over the testing set and for each
job find all jobs that have finished and use them to train a
model. However, doing so may be too expensive, as some of
the methods we used may take several minutes to run. We
solve this problem by only retraining after 5,000 new jobs
have been accumulated. This approach would be convenient
to users in production. Since trained models are persisted, new
prediction requests can be serviced immediately.

In our evaluation we limited the training/validation set size
to the most recently finished 10,000 jobs. We do that because,
typically, a heuristic known as “principle of persistence” holds.
That is, memory usage tends to persist, making the recent past
a good predictor of the near future. Although we fixed the
training/validation size to 10,000, one could find a set size
that optimizes performance by using some metaheuristic such
as Genetic Algorithms.

The traditional way to estimate test error related to fitting
a particular machine learning method is to use a validation
set. In our tool, we used the validation performance of each
method as a weight in the voting scheme. The hope was that
(1) the testing error would be similar to the validation error,
and (2) combining top methods in the validation would yield
good predictions. In our experiments, we confirmed the second
hypothesis, even though the first one was not completely
correct.

B. Analysis

In Tables IV and V we compare the performance of the
mode and each machine learning method for the validation
and test sets during each of the 5,000-job segments. We
highlight the top four methods in both sets. One would expect
to see a similar pattern in the validation and testing set.
However, the top four methods are fairly different in those sets.
Particularly, general SVM (svm-2) performs well on validation
set, but poorly in the testing data. Meanwhile, the linear SVM
model (svm-1), a method with less variance, is much more
consistent in the test set, even though it does not make to
the top four. This suggests that the SVM (svm-2) may be
over-fitted. Moreover, the Random Forests (rforest) method
performs well in general, except for a few segments in the x86
system. As a consequence, if we rely only on this method, we
may have a worse performance in some situations due to the
stochastic nature of the method. Multilayer Perceptron with
cross-validation (mlp-2) seems to over-fit whereas the fixed
version (mlp-1) appears to generalize better. More importantly,
the more sophisticated kNN (knn-2) is not very consistent.
This method is used in production in the XSEDE grid to
predict queue waiting time. We have implemented this method
ourselves for hybrid cloud environments with reasonably good
results for both running time and queue waiting time [8].
However, as one can see from Tables IV and V other methods
outperformed this form of kNN in several segments. An
explanation for this result may be that the kernel method that
is applied in this model might be more suitable for regression
tasks. The fact that the simple kNN (knn-1) performs better
suggests this conclusion.

Even though, some methods are weak, i.e. they do not
perform well in the testing data, the polling strategy we used
consistently beats the mode, as it can be seen in Figure 2. This
strategy appears to reduce the risk of using a single model,
since models tend to make mistakes differently. The weak
methods do not match up in the voting, only the strong ones.
Consequently, the highly voted bins are from strong methods.
In order to confirm this hypothesis, we used the accuracy of
the testing set as a weight. We cannot do this in production,
since this data is only known after the job for which we
are predicting memory usage has finished. However, we use
these optimal but impossible weights here to compare with
the weights we obtained from validation. Figure 3 compares
the performance of the polling method with those two sets
of weights. As one can see, the method with the validation
weights has a similar performance compared with the perfect

TABLE IV
PREDICTOR PERFORMANCE FOR X86 SYSTEM (TOP 4 IN BOLD).

Validation performance

segment mode svm-1 svm-2 rforest mlp-1 mlp-2 knn-1 knn-2

0 0.7457 0.8837 0.8769 0.9331 0.8753 0.9014 0.8742 0.8597
1 0.6987 0.9183 0.9346 0.9588 0.9106 0.9331 0.9313 0.9136
2 0.7296 0.9047 0.9202 0.9476 0.8934 0.9184 0.9256 0.9049
3 0.6466 0.9139 0.9194 0.9477 0.8974 0.9214 0.9233 0.8961
4 0.6121 0.8144 0.8209 0.8924 0.8009 0.8246 0.8657 0.8298

Test performance

segment mode svm-1 svm-2 rforest mlp-1 mlp-2 knn-1 knn-2

0 0.7910 0.8606 0.3948 0.6546 0.8610 0.7278 0.6558 0.6826
1 0.6024 0.7448 0.1202 0.7544 0.7448 0.7180 0.7540 0.5492
2 0.6626 0.8640 0.0484 0.8698 0.8630 0.8666 0.6778 0.6770
3 0.8066 0.8836 0.2464 0.8918 0.7726 0.8842 0.8792 0.5166
4 0.7742 0.8038 0.7568 0.7812 0.8014 0.8140 0.7772 0.8034

TABLE V
PREDICTOR PERFORMANCE FOR POWER8 SYSTEM (TOP 4 IN BOLD).

Validation performance

segment mode svm-1 svm-2 rforest mlp-1 mlp-2 knn-1 knn-2

0 0.9154 0.9509 0.9528 0.9996 0.9187 0.9783 0.9624 0.9254
1 0.9464 0.9641 0.9642 0.9992 0.9460 0.9839 0.9720 0.9464
2 0.9663 0.9704 0.9740 0.9994 0.9663 0.9812 0.9746 0.9603
3 0.9439 0.9537 0.9543 0.9996 0.9439 0.9789 0.9620 0.9434
4 0.8434 0.8767 0.8786 0.9982 0.8459 0.9296 0.9020 0.8414

Test performance

segment mode svm-1 svm-2 rforest mlp-1 mlp-2 knn-1 knn-2

0 0.9856 0.9856 0.0024 0.9890 0.9848 0.0666 0.9796 0.9796
1 0.9628 0.9610 0.0014 0.9656 0.9610 0.7772 0.9620 0.9610
2 0.9398 0.9436 0.0042 0.9428 0.9398 0.1322 0.2912 0.2826
3 0.8276 0.8264 0.0092 0.8360 0.8162 0.7952 0.8278 0.8168
4 0.7386 0.7412 0.0232 0.7474 0.7400 0.5162 0.7410 0.7274

0 1 2 3 4
Segment

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

0.791

0.602
0.663

0.807
0.774

0.909

0.754

0.869 0.892

0.782

Prediction performance in the x86 system

mode poll

0 1 2 3 4
Segment

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

0.986 0.963 0.940

0.828

0.739

0.989 0.965 0.942

0.835

0.754

Prediction performance in the POWER8 system

mode poll

Fig. 2. Comparison between mode and poll for both environments. In the left graph we see the performance in the x86 system, while in the right we see the
performance of the POWER8 system.

weights, and sometimes performs even slightly better, though
this should be only a result of the stochasticity of the method.

In Figure 2 we also see that the different characteristics
of both clusters play an important role in the predictors’

0 1 2 3 4
Segment

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

0.904

0.751

0.870 0.892

0.807

0.909

0.754

0.869 0.892

0.782

Prediction performance in the x86 system

perfect weight validation weight

0 1 2 3 4
Segment

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

0.986 0.964 0.944

0.832

0.754

0.989 0.965 0.942

0.835

0.754

Prediction performance in the POWER8 system

perfect weight validation weight

Fig. 3. Comparison between poll using perfect weight (i.e. weights obtained from the accuracy of the test set) and poll using validation weights for both
environments. In the left graph we see the performance in the x86 system, while in the right we see the performance of the POWER8 system.

TABLE VI
PREDICTOR PERFORMANCE OF THE TOP n ESTIMATORS FOR THE X86 SYSTEM.

Segment Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 All

0 0.6546 0.6546 0.9088 0.9092 0.9092 0.9092 0.9092
1 0.7544 0.7544 0.7538 0.7542 0.7542 0.7546 0.7546
2 0.8698 0.8698 0.7018 0.8692 0.7250 0.8690 0.8690
3 0.8918 0.8918 0.8918 0.8918 0.8918 0.8844 0.8842
4 0.7812 0.7812 0.7774 0.7824 0.7822 0.8152 0.8092

TABLE VII
PREDICTOR PERFORMANCE OF THE TOP n ESTIMATORS FOR THE POWER8 SYSTEM.

Segment Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 All

0 0.9890 0.9890 0.9890 0.9886 0.9886 0.9878 0.9868
1 0.9656 0.9656 0.9656 0.9654 0.9652 0.9644 0.9642
2 0.9428 0.9428 0.9428 0.9424 0.9426 0.9426 0.9426
3 0.8360 0.8360 0.8360 0.8346 0.8360 0.8328 0.8316
4 0.7474 0.7474 0.7474 0.7542 0.7530 0.7546 0.7534

performance: in the POWER8 system, memory usage is highly
concentrated in a single bin, as can be seen by the good
performance exhibited by a predictor based on the mode.
Therefore, since the data set is varied, models fail to detect a
useful structure, and do not have much room for improvement
over the mode. In the x86 system, which runs production code,
models seem to be able to learn some structure and can greatly
outperform the mode.

Tables VI and VII display how the performance of the
polling-based method varies as the number of voters increase.
One can see that a polling-based approach does reduce the
risk of relying on a single predictor. In segment 0 of the x86
system, for example, using three models outperforms the best
predictor in approximately 25%. This improvement does not
come without a cost, though, as adding more voters reduces
performance slightly.

IV. RELATED WORK

Research efforts related to our work are mostly in the area
of predicting two types of features: execution time and queue
waiting time. Some of these efforts can be used to predict
other features. Here is a brief description of some of these
efforts.

A. Queue time predictions

Estimating how long a job will wait in a queue before
its execution is a key component for deciding where jobs
should be placed. There are several techniques available in
the literature. For example, Li et al. [17] investigated methods
and algorithms to improve queue wait time predictions. Their
work assumes that similar jobs under similar resource states
have similar waiting times as long as the scheduling policy
and its configuration remains unchanged for a considerable
amount of time.

Nurmi et al. [18] introduced an on-line method/system,
known as QBETS, for predicting batch-queue delay. Their main
motivation is that job wait times have variations that make it
difficult for end-users to plan themselves and be productive.
The method consists of three components: a percentile estima-
tor, a change-point detector, and a clustering procedure. The
clustering procedure identifies jobs of similar characteristics;
the change-point detector determines periods of stationarity
for the jobs; and the percentile estimator calculates a quantile
that serves as a bound on future wait time.

Kumar and Vadhiyar [19] developed a technique that defines
which jobs can be classified as quick starters. These are jobs
with short waiting times compared to the other jobs waiting for
resources. Their technique considers both job characteristics
such as request size and estimated runtime, and the state of
the system, including queue and processor occupancy states.

More recently, Murali and Vadhiyar [20] proposed a frame-
work called Qespera for prediction of queue waiting times for
HPC settings. The proposed framework is based on clustering
using history of job submissions and executions. The weights
associated with the features for each prediction are adapted
depending on the characteristics of the target and history jobs.

B. Runtime predictions

Smith [16] developed a method/system for estimating both
queue wait time and job runtime. The method is based on IBL
(Instance-Based Learning) techniques and leverages genetic
algorithms (GA) to refine input parameters of the method. This
system is used by XSEDE to predict queue wait time.

Yang et al. [21] proposed a technique to predict the ex-
ecution time of jobs in multiple platforms. Their method is
based on data collected from short executions of a job and the
relative performance of each platform.

Tsafrir et al. [3] developed a technique for scheduling jobs
based on system-generated job runtime estimates, instead of
using user provided estimates. For the runtime estimates, they
analyzed several workloads from supercomputer centers and
found out that users tend to submit similar jobs over a short
period of time. Therefore, their estimations are based on the
average time of the previous two actual job runtime values.
Gaussier et al. [22] studied the impact of using machine
learning for run time predictions on job schedulers based on
backfilling.

C. Memory usage predictions

Efforts on memory usage predictions rely mostly on bench-
marking rather than on scheduler logs [21, 23, 24, 25, 26, 27].
For instance, Matsunaga and Fortes [26] assessed various
machine learning techniques for predicting spatio-temporal
utilization of resources by user applications; memory is one of
the resources investigated. Their experiments focused on two
bioinformatics applications and involved the execution of the
applications with different parameter configurations.

Another example is from Wood et al. [27] who designed
an approach for estimating the resource requirements of user
applications motivated by the need to move such applications

to virtualized environments. Their approach relies on a set of
microbenchmarks to profile the different types of virtualization
overhead on a given platform and a regression-based model to
map the native system usage profile into a virtualized one.

We built on top of existing efforts in the literature to help
users have predictions for a variety of scenarios. In particular
usability and how to handle inaccuracy for these predictions
are essential for adoption of this kind of technology. This paper
focuses on using batch scheduler logs to predict job memory
usage, but such predictions can be used for other types of
resources.

V. CONCLUSION

HPC users still have difficulties to specify resource require-
ments to run their applications and the HPC community always
welcomes novel techniques and tools to help users make better
use of cluster environments. This type of tools is even more
important in the context of HPC Cloud [28]. In this scenario,
we introduced here a tool aimed at predicting memory require-
ments of jobs submitted to cluster environments. We describe
in details the tool and how it was incorporated into the LSF
batch scheduler.

The proposed prediction tool relies on machine learning
methods to make predictions. From our experiments using job
traces from two production environments, we observed that
there is no single machine learning method that produces the
best predictions. Therefore, the proposed tool leverages the
predictions of all methods and select the most promising ones
at a given situation.

ACKNOWLEDGEMENTS

This work has been partially supported by FINEP/MCTI
under grant no. 03.14.0062.00.

REFERENCES

[1] C. B. Lee, A. Snavely, On the user–scheduler dialogue:
studies of user-provided runtime estimates and utility
functions, International Journal of High Performance
Computing Applications 20 (4) (2006) 495–506.

[2] C. B. Lee, Y. Schwartzman, J. Hardy, A. Snavely, Are
user runtime estimates inherently inaccurate?, in: Pro-
ceedings of the International Workshop on Job Schedul-
ing Strategies for Parallel Processing (JSSPP), Springer,
253–263, 2004.

[3] D. Tsafrir, Y. Etsion, D. G. Feitelson, Backfilling using
system-generated predictions rather than user runtime
estimates, IEEE Transactions on Parallel and Distributed
Systems 18 (6) (2007) 789–803.

[4] S.-H. Chiang, A. Arpaci-Dusseau, M. K. Vernon, The
impact of more accurate requested runtimes on produc-
tion job scheduling performance, in: Proceedings of the
International Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP), Springer, 103–127, 2002.

[5] D. Tsafrir, D. G. Feitelson, The dynamics of backfilling:
solving the mystery of why increased inaccuracy may

help, in: Proceedings of IEEE International Symposium
on the Workload Characterization, IEEE, 131–141, 2006.

[6] D. Zotkin, P. J. Keleher, Job-length estimation and
performance in backfilling schedulers, in: Proceedings
of the International Symposium on High Performance
Distributed Computing (HPDC), IEEE, 236–243, 1999.

[7] M. Hovestadt, O. Kao, A. Keller, A. Streit, Scheduling
in HPC resource management systems: Queuing vs.
planning, in: Proceedings of the International Workshop
on Job Scheduling Strategies for Parallel Processing
(JSSPP), Springer, 1–20, 2003.

[8] R. L. Cunha, E. R. Rodrigues, L. P. Tizzei, M. A. Netto,
Job placement advisor based on turnaround predictions
for HPC hybrid clouds, Future Generation Computer
Systems 67 (2017) 35 – 46.

[9] A. Coates, A. Y. Ng, The importance of encoding versus
training with sparse coding and vector quantization, in:
Proceedings of the 28th International Conference on
Machine Learning (ICML-11), 921–928, 2011.

[10] C. Cortes, V. Vapnik, Support-vector networks, Machine
Learning 20 (3) (1995) 273–297.

[11] L. Breiman, Random forests, Machine learning 45 (1)
(2001) 5–32.

[12] J. R. Quinlan, Induction of decision trees, Machine
learning 1 (1) (1986) 81–106.

[13] I. Sutskever, J. Martens, G. E. Dahl, G. E. Hinton, On
the importance of initialization and momentum in deep
learning., ICML (3) 28 (2013) 1139–1147.

[14] Y. Nesterov, A method of solving a convex programming
problem with convergence rate O (1/k2), in: Soviet
Mathematics Doklady, vol. 27, 372–376, 1983.

[15] D. Kingma, J. Ba, Adam: A method for stochastic
optimization, arXiv preprint arXiv:1412.6980 .

[16] W. Smith, Prediction Services for Distributed Computing,
in: Proceeding of the 21th International Parallel and
Distributed Processing Symposium (IPDPS), 2007.

[17] H. Li, J. Chen, Y. Tao, D. Gro, L. Wolters, Improving a
local learning technique for queue wait time predictions,
in: Proceedings of the Sixth IEEE International Sym-
posium on Cluster Computing and the Grid (CCGrid),
2006.

[18] D. Nurmi, J. Brevik, R. Wolski, QBETS: queue bounds
estimation from time series, in: Proceedings of the 13th
International Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP), 2008.

[19] R. Kumar, S. Vadhiyar, Identifying quick starters: to-
wards an integrated framework for efficient predictions
of queue waiting times of batch parallel jobs, in: Pro-
ceedings of the 16th International Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP),
2013.

[20] P. Murali, S. Vadhiyar, Qespera: an adaptive framework
for prediction of queue waiting times in supercomputer
systems, Concurrency and Computation: Practice and
Experience, 2015 .

[21] L. T. Yang, X. Ma, F. Mueller, Cross-Platform Perfor-
mance Prediction of Parallel Applications Using Partial
Execution, in: Proceedings of the 2005 ACM/IEEE con-
ference on Supercomputing (SC), 2005.

[22] E. Gaussier, D. Glesser, V. Reis, D. Trystram, Improving
backfilling by using machine learning to predict running
times, in: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, ACM, 64, 2015.

[23] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C.
Perry, J. S. Harper, D. V. Wilcox, PACE-A toolset for the
performance prediction of parallel and distributed sys-
tems, International Journal of High Performance Com-
puting Applications 14 (3) (2000) 228–251.

[24] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Ba-
dia, A. Purkayastha, A framework for performance mod-
eling and prediction, in: Supercomputing, ACM/IEEE
2002 Conference, IEEE, 21–21, 2002.

[25] G. Marin, J. Mellor-Crummey, Cross-architecture per-
formance predictions for scientific applications using
parameterized models, in: ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 32, ACM, 2–13, 2004.

[26] A. Matsunaga, J. A. Fortes, On the use of machine learn-
ing to predict the time and resources consumed by ap-
plications, in: Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid
Computing, IEEE Computer Society, 495–504, 2010.

[27] T. Wood, L. Cherkasova, K. Ozonat, P. Shenoy, Profiling
and modeling resource usage of virtualized applications,
in: Proceedings of the 9th ACM/IFIP/USENIX Interna-
tional Conference on Middleware, Springer-Verlag New
York, Inc., 366–387, 2008.

[28] M. A. S. Netto, R. L. F. Cunha, N. Sultanum, Deciding
When and How to Move HPC Jobs to the Cloud, IEEE
Computer 48 (11) (2015) 86–89.

